• Title/Summary/Keyword: methylene blue adsorption

Search Result 120, Processing Time 0.028 seconds

Biosorption of Methylene Blue from Aqueous Solution using Dried Rhodotorula glutinis Biomass

  • Dae Haeng Cho;Jaesung Lee;Eui Yong Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.273-277
    • /
    • 2023
  • The biosorption of methylene blue (MB) from aqueous solution was investigated using dried Rhodotorula glutinis as the biosorbent. The effects of pH, initial dye concentration, biosorbent dosage, and kinetic studies were determined to obtain valuable information for biosorption. Results indicated that most of the adsorbed MB bound within 30 minutes of contact and the MB adsorption capacity increased from 21.1 to 101.8 mg/g with the initial MB concentration increased from 50 to 300 mg/L. Additionally, the MB adsorption capacity gradually increased from pH 4.0 to 9.0, reaching its peak at an initial pH of 9.0. As the biomass load was increased from 0.25 to 4.0 g/L, the MB removal efficiency increased from 14.1 to 84.5%. The Langmuir model provided the best fit throughout the concentration range, and the maximum adsorption capacity (qmax) and Langmuir constant (b) were determined to be 135.14 mg/g and 0.026 l/mg, respectively. Furthermore, the biosorbent process of R. glutinis was found to follow pseudo-second-order kinetics and the calculated qeq,cal value showed good agreement with the experimental qeq value. Overall, the biosorption of MB by R. glutinis can be characterized as a monolayer, single site type phenomenon, and the rate-limiting step was determined to be the chemical reaction between the adsorbent and the adsorbate.

Removal of Methylene Blue in Water Phase by Using Juniperus chinensis (향나무를 활용한 수중에서 메틸렌 블루의 제거)

  • Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.278-282
    • /
    • 2018
  • The development of treatment technologies for recycling waste woods generated from tree pruning is required in Gangwon province forest. In this study, according to adsorption experiments using three types (Larix kaemoferi, Juniperus chinensis, Pinus densiflora) of waste woods, Juniperus chinensis as a biosorbent showing an excellent removal ability was selected for the removal of methylene blue in an aqueous phase. When 0.4 g/100 mL of Juniperus chinensis was used to improve the removal efficiency of methylene blue for 4 h, each 100, 200 and 300 mg/L of methylene blue dissolved in the aqueous phase were removed to 98, 93, and 81%, respectively. The adsorption equilibrium data obtained by changing adsorbent concentrations was found to be more consistent with the Langmuir than the Freundlich equation. In addition, based on dynamic experiments by changing the methylene blue concentration, the biosorption kinetics equation was more suitable for a pseudo-second order model. In order to enhance the removal capability of highly concentrated methylene blue, 300 and 400 mg/L of methylene blue were operated for 4 h under 210 rpm of agitation velocity and removal efficiencies were 92 and 76%, respectively. Consequently, these experimental results can be effectively utilized as a new biosorption technology for economically treating methylene blue dissolved in an aqueous phase.

Equilibrium and Dynamic Adsorption of Methylene Blue from Aqueous Solutions by Surface Modified Activated Carbons

  • Goyal, Meenakshi;Singh, Sukhmehar;Bansal, Roop C.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.170-179
    • /
    • 2004
  • The equilibrium and dynamic adsorption of methylene blue from aqueous solutions by activated carbons have been studied. The equilibrium studies have been carried out on two samples of activated carbon fibres and two samples of granulated activated carbons. These activated carbons have different BET surface areas and are associated with varying amounts of carbon oxygen surface groups. The amounts of these surface groups was enhanced by oxidation with $HNO_3$ and $O_2$ gas at $350^{\circ}C$ and decreased by degassing at increasing temperatures of $400^{\circ}$, $650^{\circ}$ and $950^{\circ}C$. The adsorption increases on oxidation of the carbon surface and decreases on degassing. The increase in adsorption has been attributed to the formation of acidic carbon-oxygen surface groups and the decrease in adsorption on degassing to their elimination. The dynamic adsorption studies have been carried out on the two granulated activated carbons using two 50 mm diameter glass columns at a feed concentration of 300 mg/L and at different hydraulic loading rates (HLR) and bed heights. The minimum achievable concentrations are comparatively lower while the adsorption capacities are higher for GAC-S under the same operating conditions. The adsorption capacity of a carbon increases with increase in HLR but the rate of increase decreases at higher HLR values.

  • PDF

Removal of Methylene Blue Using UV-C Pretreated Citrobacter freundii JH 11-2 and Bacillus pseudomycoides JH 2-2 Biomass

  • Gim, HaeWon;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.2
    • /
    • pp.38-43
    • /
    • 2014
  • In this study, we evaluated the methylene blue (MB) adsorption potential of non-treated and UV-C pretreated bacterial biomass from aqueous solution. The UV-C pretreatment denature the biomass and has increased overall functional groups when compared to non-treated biomass. The biosorbent was exposed to various pH, biomass dose, and contact time. The results showed that the dried and UV-C pretreated biomass effectively removed MB within 30 min. Dried and UV-C pretreated biomass of Bacillus pseudomycoides JH 2-2 showed a adsorption of 858.2 and 1072.4 mg/g at optimum conditions (pH: 9.0, contact time: 30 min, biomass dose: 1 g/L). Similarly, dried and UV-C pretreated biomass of Citrobacter freundii JH 11-2 showed an adsorption 868.3 and 954 mg/g at optimum conditions (pH: 9.0, contact time: 10 min, biomass dose: 1.5 g/L). The changes in the functional groups of UV-C pretreated biomass could be responsible for enhanced adsorption of MB. The results obtained have shown that non-treated and UV-C pretreated biomass has a high adsorption capacity for MB dye and can be used as a low-cost biosorbent in wastewater treatments.

Efficient Adsorption of Methylene Blue from Aqueous Solution by Sulfuric Acid Activated Watermelone Rind (Citrullus lanatus)

  • Lee, Seo-Yun;Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.348-356
    • /
    • 2021
  • The lignocellulose-based dried watermelon rind (WR) was modified with sulfuric acid, namely SWR for enhancement of methylene blue (MB) adsorption from the aqueous solution. According to FT-IR analysis, after the modification of WR with sulfuric acid, the functional groups of R-SO3H, COOH and -OH groups was formated or enhanced on the surface of the WR. Moreover, the point of zero charge (pHpzc) was changed from 6.3 to 4.1 after modification, which widened the range for adsorbing of cationic dye MB. The adsorption process of MB onto the SWR was suitable for pseudo-2nd-order and Langmuir model and the maximum adsorption capacity of Langmuir was found to be 334.45 mg/g at pH 7. In adition, the adsorption process occurs through the electrostatic interaction, hydrogen bridge formation, electron donor-acceptor relationship, and 𝜋-𝜋 electron dispersing force between functional groups on the carbon surface with MB molecules. Depending on functional groups available on the SWR surface, the MB adsorption mechanism can occur in combination with various interactions.

Adsorption of Methylene Blue on Titanate Nanotubes Synthesized with Ultra-Small Fe3O4 Nanoparticles

  • Marc, Maciej;Dudek, Miroslaw R.;Koziol, Jacek J.;Zapotoczny, Bartlomiej
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850142.1-1850142.9
    • /
    • 2018
  • Modified titanate nanotubes (TNT) were tested for their adsorption of methylene blue (MB) from water solutions. They were obtained from the $TiO_2$ nanopowder using a standard alkaline hydrothermal method but in the stage of acid washing, when the titanate flakes begin to roll into nanotubes, magnetite nanoparticles were added. The $Fe_3O_4$ magnetic nanoparticles with diameter of around 2 nm and 12 nm were used in the tests. Significantly stronger adsorption of MB was observed when smaller nanoparticles were used compared to using larger nanoparticles and compared to the case of unmodified nanotubes. It was shown that the increased adsorption of MB is associated with a more negative value of ${\zeta}$-potential for titanates modified by the ultra-small nanoparticles. In the adsorption experiment, pH 7 was selected. These results may prove to be of great importance in the case of potential applications corresponding to the use of such material for wastewater purification.

Removal of Methylene blue from saline solutions by adsorption and electrodialysis

  • Lafi, Ridha;Mabrouk, Walid;Hafiane, Amor
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.139-148
    • /
    • 2019
  • In this study, the removal of MB from saline solutions was evaluated by two methods by adsorption and electrodialysis; the adsorption of the mixture dye/salt on dried orange peel waste (OPW) was studied in batch method. In this study the biosorption of cationic dye by OPW was investigated as a function of initial solution pH, and initial salt (sodium chloride) concentration. The maximal dye uptake at $pH{\geq}3.6$ in the absence and in the presence of salt and the dye uptake diminished considerably in the presence of increasing concentrations of salt up to 8 g/L. The Redlich Peterson and Langmuir were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. As well, this work deals with the electrodialysis application to remove the dye. Synthetic solutions were used for the investigation of the main operational factors affecting the treatment performance; such as applied voltage, pH, initial dye concentration and ionic strength. The experimental results for adsorption and electrodialysis confirmed the importance of electrostatic interactions on the dye. The electrodialysis process with standard ion exchange membranes enabled efficient desalination of cationic dye solutions; there are two main factors in fouling: electrostatic interaction between cations of dyes and the fixed charged groups of the CEM, and affinity interactions.

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF

Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball (Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가)

  • Oh, Ju Hyun;Ahn, Hosang;Jang, Dae Gyu;Ahn, Chang Hyuk;Lee, Saeromi;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.636-642
    • /
    • 2013
  • In order to overcome drawbacks (i.e., filtration and recovery) of conventional powder type photocatalysts, nano-ZnO/Laponite/PVA (ZLP) photocatalyzed adsorption balls were developed by using in situ mixing of nanoscale ZnO as a photocatalyst, and Laponite as both adsorbent and supporting media in deionized water, followed by the poly vinyl alcohol polymerization with boric acid. The optimum mixing ratio of nano-ZnO:Laponite:PVA:deionized water was found to be 3:1:1:16 (by weight), and the mesh and film produced by PVA polymerization with boric acid might inhibit both swelling of Laponite and detachment of nanoscale ZnO from ZLP balls. Drying ZLP balls with microwave (600 watt) was found to produce ZLP balls with stable structure in water, and various sizes (55~500 ${\mu}m$) of pore were found to be distributed based on SEM and TEM results. In the initial period of reaction (i. e., 40 min), adsorption through ionic interaction between methylene blue and Laponite was the main removal mechanism. After the saturation of methylene blue to available adsorption sites for Laponite, the photocatalytic degradation of methylene blue occurred. The effective removal of methylene blue was attributed to adsorption and photocatalytic degradation. Based on the results from this study, synthesized ZLP photocatalyzed adsorption balls were expected to remove recalcitrant organic compounds effectively through both adsorption and photocatalytic degradation, and the risks of environmental receptors caused by detachment of nanoscale photocatalysts can be reduced.

Metachromasy of Methylene Blue on the Bacteriorhodopsin Incorporated into L-${\alpha}$-lecithin Vesicle (L-${\alpha}$-lecithin으로 재구성된 Bacteriorhodopsin Vesicle에서 Methylene Blue의 Metachromasy)

  • Hong Lee;Huyn-Ock Pae;Chun-Ock Lim;Hoo-Seol Lee
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.4
    • /
    • pp.504-510
    • /
    • 1992
  • Absorption properties of methylene blue (MB) in L-${\alpha}$-lecithin vesicle, bacteriorhodopsin and incorporated bacteriorhodopsin (InBR) vesicle systems at 20∼$60^{\circ}C$ has been studied by adsorption spectroscopy. The equilibrium of MB between monomer and dimer in lecithin vesicles has been existed at low concentration of MB, but oligomer has been formed in vesicle at higher concentration of MB. In most cases, the MB cluster was redistributed to monomer at the concentration of lecithin vesicles. Adding BR to constanr concentration of MB deceased the adsorption ratio (${\alpha}/{\beta}$) of MB, and MB was formed oligomeric aggregate. Absorption ratio (${\alpha}/{\beta}$) of MB was increased during phase transition of InBR vesicles, but independent of phase transition of lecithin vesicles. It suggested that aggregate of MB on the surfaces of InBR vesicles were redistributed to monomer under the influence of lipid phase transition.

  • PDF