• Title/Summary/Keyword: methylation-specific PCR

Search Result 86, Processing Time 0.027 seconds

Promoter Methylation Status of Two Novel Human Genes, UBE2Q1 and UBE2Q2, in Colorectal Cancer: a New Finding in Iranian Patients

  • Mokarram, Pooneh;Shakiba-Jam, Fatemeh;Kavousipour, Soudabeh;Sarabi, Mostafa Moradi;Seghatoleslam, Atefeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8247-8252
    • /
    • 2016
  • Background: The ubiquitin-proteasome system (UPS) degrades a variety of proteins which attach to specific signals. The ubiquitination pathway facilitates degradation of damaged proteins and regulates growth and stress responses. This pathway is altered in various cancers, including acute lymphoblastic leukemia, head and neck squamous cell carcinoma and breast cancer. Recently it has been reported that expression of newly characterized human genes, UBE2Q1 and UBE2Q2, putative members of ubiquitin-conjugating enzyme family (E2), has been also changed in colorectal cancer. Epigenetics is one of the fastest-growing areas of science and nowadays has become a central issue in biological studies of diseases. According to the lack of information about the role of epigenetic changes on gene expression profiling of UBE2Q1 and UBE2Q2, and the presence of CpG islands in the promoter of these two human genes, we decided to evaluate the promoter methylation status of these genes as a first step. Materials and Methods: The promoter methylation status of UBE2Q1 and UBE2Q2 was studied by methylation-specific PCR (MSP) in tumor samples of 60 colorectal cancer patients compared to adjacent normal tissues and 20 non-malignant controls. The frequency of the methylation for each gene was analyzed by chi-square method. Results: MSP results revealed that UBE2Q2 gene promoter were more unmethylated, while a higher level of methylated allele was observed for UBE2Q1 in tumor tissues compared to the adjacent normal tissues and the non malignant controls. Conclusions: UBE2Q1 and UBE2Q2 genes show different methylation profiles in CRC cases.

Aberrant DNA Methylation of P16, MGMT, and hMLH1 Genes in Combination with MTHFR C677T Genetic Polymorphism and Folate Intake in Esophageal Squamous Cell Carcinoma

  • Chen, Jing;Huang, Zhi-Jie;Duan, Yu-Qin;Xiao, Xin-Rong;Jiang, Jian-Qing;Zhang, Ru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5303-5306
    • /
    • 2012
  • Aim: The present case-control study was conducted to explore the association of MTHFR gene polymorphism and relations of P16, MGMT and HMLH1 to MTHFR and folate intake. Methods: A total of 257 cases of esophageal squamous cell carcinoma confirmed by histopathological examination were collected. Genotyping of P16, MGMT and HMLH1 was accomplished by methylation-specific polymerase chain reaction (PCR) after sodium bisulfate modification of DNA and the MTHFR C677T genetic polymorphism was detected by PCR-restriction fragment-length polymorphism (PCR-RFLP). Results: The proportions of DNA hypermethylation in P16, MGMT and hMLH1 in cancer tissues were significantly higher than in paracancerous normal tissue. The proportion of hypermethylation in at least one gene was 88.5% in cancer tissue, and was also significantly higher than that in paracancerous normal tissue. Our finding showed individuals with homozygotes (TT) of MTHFR C677T had significant risk of DNA hypermethylation of MGMT in cancer tissues, with an OR (95% CI) of 3.15 (1.12-6.87). Similarly, patients with high intake of folate also showed a slight high risk of DNA methylation of MGMT, with OR (95% CI) of 2.03 (1.05-4.57). Conclusion: Our study found the P16, MGMT and hMLH1 demonstrate a high proportion of hypermethylation in esophageal squamous cell cancer cancer tissues, which might be used as biomarkers for cancer detection.

Combined Effects Methylation of FHIT, RASSF1A and RARβ Genes on Non-Small Cell Lung Cancer in the Chinese Population

  • Li, Wen;Deng, Jing;Tang, Jian-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5233-5237
    • /
    • 2014
  • Epigenetic modifications of tumour suppressor genes are involved in all kinds of human cancer. Aberrant promoter methylation is also considered to play an essential role in development of lung cancer, but the pathogenesis remains unclear.We collected the data of 112 subjects, including 56 diagnosed patients with lung cancer and 56 controls without cancer. Methylation of the FHIT, RASSF1A and RAR-${\beta}$ genes in DNA from all samples and the corresponding gene methylation status were assessed using the methylation-specific polymerase chain reaction (PCR, MSP). The results showed that the total frequency of separate gene methylation was significantly higher in lung cancer compared with controls (33.9-85.7 vs 0 %) (p<0.01).Similar outcomes were obtained from the aberrant methylation of combinations of any two or three genes (p<0.01). There was a tendency that the frequency of combinations of any two or three genes was higher in stage I+II than that in stage III+IV with lung cancer. However, no significant difference was found across various clinical stages and clinic pathological gradings of lung cancer (p>0.05).These observations suggest that there is a significant association of promoter methylation of individual genes with lung cancer risk, and that aberrant methylation of combination of any two or three genes may be associated with clinical stage in lung cancer patients and involved in the initiation of lung cancer tumorigenesis. Methylation of FHIT, RASSF1A and $RAR{\beta}$ genes may be related to progression of lung oncogenesis.

Methylation Status and Expression of E-cadherin in Oral Squamous Cell Carcinomas Compared t6 Benign Oral Epithelial Lesions

  • Son, Hyun-Jin;Chu, Jung-Youb;Cho, Eui-Sic;Lee, Dong-Geun;Min, Myung-Gee;Lee, Suk-Keun;Cho, Nam-Pyo
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.27-32
    • /
    • 2006
  • Expression of invasion/metastasis suppressor, E-cadherin, is reduced in many types of human carcinomas. Although somatic and germline mutations in the CDH1, which encodes the human E-cadherin, have frequently been reported in cases with diffuse gastric and lobular breast cancers, irreversible genetic inactivations are rare in other human carcinomas. Recently, it has been well documented that some genes in human cancers may be inactivated by altered CpG methylation. Herein, we determined the expression and methylation status of E-cadherin in oral squamous cell carcinoma(SCC) by immunohistochemistry and methylation-specific PCR. The expression of E-cadherin was significantly higher in the well-differentiated oral SCCs than the moderately or poorly differentiated ones. None of eight tested benign epithelial hyperplasias showed aberrant methylation, whereas five of 12 oral squamous cell carcinomas showed aberrant methylation. When we compared E-cadherin expression with methylation status, oral SCCs with normal methylation showed a higher expression of E-cadherin than those with methylation. These findings suggest that aberrant CpG methylation of CDH1 promoter region is closely associated with transcriptional inactivation and might be involved in tumor progression of the oral mucosa.

Methylation Status of the O6-Methylguanine-Deoxyribonucleic Acid Methyltransferase Gene Promoter in World Health Organization Grade III Gliomas

  • Yang, Seung-Heon;Kim, Yong-Hwy;Kim, Jin-Wook;Park, Chul-Kee;Park, Sung-Hye;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.385-388
    • /
    • 2009
  • Objective : We analyzed the methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter in World Health Organization (WHO) grade III gliomas in association with other molecular markers to evaluate their prevalence. Methods : The samples of a total of 36 newly WHO grade III glioma patients including 19 anaplastic oligodendrogliomas (AO), 7 anaplastic oligoastrocytomas (AOA), and 10 anaplastic astrocytomas (AA) were analyzed. The methylation status of the MGMT gene promoter was confirmed by methylation-specific polymerase chain reaction. The 1p/19q chromosomal deletion status and EGFR amplification were assessed by Fluorescence In-Situ Hybridization. MGMT, EGFR, EGFRvlll, and p53 expression were analyzed by immunohistochemical staining. Results : The MGMT gene promoter was methylated in 32 (88.9%) and unmethylated in 4 (11.2%) Among them, all of the AO and AOA had methylated MGMT gene promoter without exception. Significant associations between MGMT gene promoter hypermethylation and 1p/19q deletion was observed (p=0.003). Other molecular markers failed to show significant associations between MGMT gene promoter statuses. Conclusion : There was extensive epigenetic silencing of MGMT gene in high grade gliomas with oligodendroglial component. Together with frequent 1p/19q co-deletion in oligodendroglial tumors, this may add plausible explanations supporting the relative favorable prognosis in oligodendroglial tumors compared with pure astrocytic tumors.

PROMOTER METHYLATION OF THE CDH-13 GENE IN THE ORAL SQUAMOUS CELL CARCINOMA (구강 편평상피암종에서 CDH-13 유전자의 promoter methylation에 대한 연구)

  • Lee, Moon-Joo;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.525-531
    • /
    • 2008
  • CDH-13(T-cadherin), which is one of a kind among the 20 cadherins, can be found mainly in wall of aorta, neuron, spleen, blood vessel etc. It is also called H-cadherin. This structural difference can explain that CDH-13 is thought to play a key role in maintaining mutual relation between extra and intra-cellular environment rather than in cell adhesion. The main function of CDH-13 is to participate in blood vessel function. Additionally, it is known to regulate cell growth and cell contact inhibition. When cells are proliferating, cell surface perceives other cells so that substance such as CDH-13 can inhibit their growth or proliferation resulting in homeostasis without endless proliferation or invasion of connective tissue boundaries. However, tumor cell itself appears to be different from normal cells' growth, invasion or transmission. Therefore, it can be diagnosed that these characteristics are closely related to expression of CDH-13 in tumor cells. This study is to investigate expression of CDH-13 in SCC and its correlation with promoter methylation. 20 of tissue species for the study are excised and gathered from 20 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find development of CDH-13 in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1.Immunohistochemical staining: In normal oral squamous epithelial tissue, strong expression of CDH-13 was found in cell plasma membrane of basal cell layer. On the other hand, in case of low-differentiated oral SCC, development of CDH-13 was hardly seen. 2.The development of CDH-13 gene: In 9 of samples, expression of CDH-13 gene could be seen and 2 of them showed low expression compared to the others. And rest of the 11 samples showed no expression of CDH-13 gene. 3.Methylation of CDH-13 gene: Among 9 samples which expressed CDH-13 gene, 7 of them showed unmethylation. In addition, among 11 samples without CDH-13 gene expression, 10 showed methylation. According to the results stated above, promoter methylation were found in 13 samples(65%) among 20 of oral SCC samples. In low-differentiated SCC, suppression of gene expression could be seen accompanying promoter methylation. These phenomenon of gene expression was proved by immunohistochemical investigation. Finally, for development of oral SCC, conclusions can be made that suppression of CDH-13 played a main role and suppression of gene expression was originated from promoter methylation. Considering this, it is expected that suppression of CDH-13 from promoter methylation to be utilized as a good diagnostic marker of oral SCC.

($P16^{ink4}$ Methylation in Squamous Cell Carcinoma of the Oral Cavity. (구강 편평세포암종에서 $P16^{ink4}$ 유전자의 Methylation에 대한 연구)

  • Kang, Gin-Won;Kim, Kyung-Wook;Lyu, Jin-Woo;Kim, Chang-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2000
  • The p16 protein is a cyclin dependent kinase inhibitor that inhibits cell cycle progression from $G_1$ phase to S phase in cell cycle. Many p16 gene mutations have been noted in many cancer-cell lines and in some primary cancers, and alterations of p16 gene function by DNA methylation have been noticed in various kinds of cancer tissues and cell-lines. There have been a large body of literature has accumulated indicating that abnormal patterns of DNA methylation (both hypomethylation and hypermethylation) occur in a wide variety of human neoplasma and that these aberrations of DNA methylation may play an important epigenetic role in the development and progression of neoplasia. DNA methylation is a part of the inheritable epigenetic system that influences expression or silencing of genes necessary for normal differentiation and proliferation. Gene activity may be silenced by methylation of up steream regulatory regions. Reactivation is associated with demethylation. Although evidence or a high incidence of p16 alterations in a variety of cell lines and primary tumors has been reported, that has been contested by other investigators. The precise mechanisms by which abnormal methylation might contribute to carcinogenesis are still not fully elucidated, but conceivably could involve the modulation of oncogene and other important regulatory gene expression, in addition to creating areas of genetic instability, thus predisposing to mutational events causing neoplasia. There have been many variable results of studies of head and neck squamous cell carcinoma(HNSCC). This investigation was studied on 13 primary HNSCC for p16 gene status by protein expression in immunohistochemistry, and DNA genetic/epigenetic analyzed to determine the incidence, the mechanisms, and the potential biological significance of its Inactivation. As methylation detection method of p16 gene, the methylation specific PCR(MSP) is sensitive and specific for methylation of any block of CpG sites in a CpG islands using bisulfite-modified DNA. The genomic DNA is modified by treatment with sodium bisulfate, which converts all unmethylated cytosines to uracil(thymidine). The primers designed for MSP were chosen for regions containing frequent cytosines (to distinguish unmodified from modified DNA), and CpG pairs near the 5' end of the primers (to provide maximal discrimination in the PCR between methylated and unmethylated DNA). The two strands of DNA are no longer complementary after bisulfite treatment, primers can be designed for either modified strand. In this study, 13 paraffin embedded block tissues were used, so the fragment of DNA to be amplified was intentionally small, to allow the assessment of methylation pattern in a limited region and to facilitate the application of this technique to samlples. In this 13 primary HNSCC tissues, there was no methylation of p16 promoter gene (detected by MSP and automatic sequencing). The p16 protein-specific immunohistochemical staining was performed on 13 paraffin embedded primary HNSCC tissue samples. Twelve cases among the 13 showed altered expression of p16 proteins (negative expression). In this study, The author suggested that low expression of p16 protein may play an important role in human HNSCC, and this study suggested that many kinds of genetic mechanisms including DNA methylation may play the role in carcinogenesis.

  • PDF

5'-CpG Island Promoter Hypermethylation of the CAV-1 Gene in Breast Cancer Patients of Kashmir

  • Syeed, Nidda;Hussain, Firdous;Husain, Syed Akhtar;Siddiqi, Mushtaq A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.371-376
    • /
    • 2012
  • Background: Caveolin-1 (CAV-1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signalling. Aberrant promoter methylation of CAV-1 is associated with inactivation of expression. We previously observed CAV-1 mutations in breast cancers and therefore devised this study to examine the hypermethylation status of the promoter region of CAV-1 with reference to breast cancer progression and development. Methods: Hypermethylation status of CAV-1 was analyzed by methylation specific PCR. Loss of expression of the CAV-1 gene was further evaluated by semi-quantitative rt-PCR. Results: 28/130 (21.5%) breast cancer cases showed promoter hypermethylation with reduced CAV-1 expression levels when compared with adjacent normal breast tissue. CAV-1 gene hypermethylation was significantly related to menopausal status, histopathological grade and age. Conclusion: The rationale of our study is that CAV-1 gene is transcriptionally repressed in breast cancer cells due to hypermethylation. Our results reveal that promoter hypermethylation and loss of expression of the CAV-1 gene is an important alternative mechanism for inactivation of CAV-1 leading to complete gene silencing.

Identification of Pancreatic Cancer in Biliary Obstruction Patients by FRY Site-specific Methylation

  • Angsuwatcharakon, Phonthep;Rerknimitr, Rungsun;Kongkam, Pradermchai;Ridtitid, Wiriyaporn;Ponauthai, Yuwadee;Srisuttee, Ratakorn;Kitkumthorn, Nakarin;Mutirangura, Apiwat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4487-4490
    • /
    • 2016
  • Background: Methylation at cg 16941656 of FRY is exclusively found in normal pancreatic tissue and has been proven to be specific for pancreatic-in-origin among several adenocarcinomas. Here, we investigated methylated DNA in the bile as a biomarker to differentiate the cause of obstruction between pancreatic cancer and benign causes. Materials and Methods: Bile samples of 45 patients with obstructive jaundice who underwent ERCP were collected and classified into pancreatic cancer (group 1) and benign causes (group 2) in 24 and 21 patients, respectively. DNA was extracted from bile and bisulfite modification was performed. After, methylation in cg 16941656 of FRY was identified by real-time PCR, with beta-actin used as a positive control. Results: Methylated DNA was identified in 10/24 (41.67%) and 1/21 (4.8%) of cases in groups 1 and 2, respectively (P= 0.012). The sensitivity, specificity, positive predictive value and negative predictive value to differentiate pancreatic cancer from benign causes were 42%, 95%, 91%, and 59%, respectively. Conclusions: Detecting a methylation at cg 16941656 of FRY in bile has high specificity, with an acceptable positive likelihood rate, and may therefore be helpful in distinguish pancreatic cancer from benign strictures.

THE HYPERMETHYLATION OF E-CADHERIN GENE IN ORAL SQUAMOUS CELL CARCINOMA (구강 편평세포암에서 E-cadherin 유전자의 과메틸화)

  • Pyo, Sung-Woon;Kim, Young-Sill;Park, Ji-Young;Kim, Chang-Hyen;Lee, Won;Park, Min-Kyu
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • Loss of E-cadherin (E-cad) expression has been found in multiple cancers and is postulated to facilitate tumor cell dissociation and metastais. Promotor methylation may provides an alternative pathway for loss of gene function. This study evaluated the role of hypermethylation in the down-regulation of E-cad in oral squamous cell carcinoma (OSCC). We examined the E-cad expression by immunohistochemical staining and detected methylation status by methylation-specific polymerase chain reaction (MSP) in 20 OSCC tissues. Overally, 12 (60%) cases of hypermethylation of E-cad were detected and we found there were no correlation between methylation and age, histologic grade, lympn node metastasis, tumor size and clinical stage. However, Eleven (73.3%) of 15 samples which was negative for E-cad staining showed hypermethylation of E-cad promotor region. On the other hand, only one (20%) of 5 E-cad positive sample was observed with methylated status. The underexpression of E-cad was found to be related to promotor hypermethylation (p=0.035). In conclusion, we suggest that hypermethylation play a role in inactivation of E-cad gene and may be a appreciable biomarker for diagnosis and treatment of OSCC.