• Title/Summary/Keyword: methyl methacrylate

Search Result 589, Processing Time 0.028 seconds

Homopolymer Distribution in Polystyrene - Poly(methyl methacrylate) Diblock Copolymer (폴리스티렌-폴리(메틸 메타크릴레이트) 이종 블록 공중합체 내의 단일중합체 분포)

  • Hong, Sung-Ho;Lee, Eun-Ji;Song, Kwon-Bin;Lee, Kwang-Hee
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.531-536
    • /
    • 2011
  • Homopolymer distribution in block copolymer/homopolymer blends was investigated as a function of homopolymer concentration and homopolymer molecular weight. The deuterated poly(methyl methacrylate) or polystyrene was blended with a deuterated polystyrene-poly(methyl methacrylate) diblock copolymer up to a concentration of 20 wt%. Samples were characterized by small-angle X-ray scattering (SAXS), neutron reflectivity and transmission electron microscopy. The block copolymer with a thin-film geometry formed alternating lamellar microdomains oriented parallel to the substrate surface. By adding the homopolymer, the microdomain structure was significantly disturbed. As a consequence, a poorly ordered morphology appeared when the homopolymer concentration exceeded 15 wt%. Increasing the homopolymer concentration and/or the homopolymer molecular weight caused the microdomains to swell less uniformly, resulting in segregation of the homopolymer toward the middle of the microdomains.

Preliminary Investigation into the Use of Methyl Methacrylate(MMA)-Based Materials for Road Repair (메틸 메타크릴레이트 기반 도로 보수재 개발을 위한 기초 연구)

  • Ji, Sung-Jun;Pyeon, Su-Jeong;Choi, Byung-Cheol;Kim, Jae-Hwan;Kim, Do-Su;Nam, Jeong-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2024
  • This research explores the potential of methyl methacrylate(MMA) as a material for road repair applications. It specifically examines two MMA formulations, referred to as type A and type B, in relation to their performance on concrete substrates. The evaluation criteria included drying time, tensile bond strength, and resistance to alkali. The condition of the substrate surface was varied across three curing environments: constant temperature and humidity(R), immersion in water(W), and immersion in water with chloride ions(N). The findings indicate that type B MMA exhibits a quicker drying time and superior resistance to alkali compared to type A. While type A demonstrated greater tensile bond strength, it failed to maintain adhesion with the concrete base. Based on the parameters tested in this study, type B MMA emerges as the more favorable option for road repair contexts. Nonetheless, the study underscores the necessity for additional testing on asphalt substrates to fully assess the material's durability and applicability for long-term road maintenance.

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process (초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • The supercritical fluids (SCFs) have been widely used for material synthesis and processing due to their remarkable properties including low viscosity, high diffusivity and low surface tension. Carbon dioxide is one of the suitable solvents in SCFs processes in terms of its advantages such as easy processibility (with low critical temperature and pressure), inexpensive, nonflammable, nontoxic, and readily available. However, it has generally low solubility for high molecular weight polymers with the exception of fluoropolymers and siloxane polymers. Therefore, hydrocarbon solvents and hydrochlorofluorocarbons have been used for various SCFs process by its high solubility for high molecular weight polymers. In this report, a PMMA/clay nanocomposites were fabricated by using supercritical fluid process. The $Na^+$-MMT(montmorillonites)was modified by a fluorinated surfactant which is able to enhance compatibility with the chlorodifluoromethane(HCFC-22) and thus, improve dispersability of the clay in the polymer matrix. The PMMA/fluorinated surfactant modified clay nanocomposite shows enhanced mechanical and thermal properties which characterized by X-raydiffraction(XRD), Thermo gravimetric analysis(TGA), Dynamic mechanical analysis (DMA) and Transmission electron microscopy (TEM).

Preparation and Characterization of Silicone Hydrogel Lens Containing Poly(ethylene glycol) (PEG를 포함한 실리콘 수화젤 렌즈의 제조 및 특성)

  • Jang, Ha-Na;Chung, Youn-Bok;Kim, Sung-Soo
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.169-174
    • /
    • 2009
  • Silicone hydrogels incorporated with poly(ethylene glycol)(PEG) were prepared and characterized to evaluate the effects of PEG on contact lenses. The silicone hydrogels were copolymerized with methacryloxypropyl tris(trimethylsiloxy) silane (TRIS), methyl methacrylate (MMA), N,N-dimethyl acrylamide (DMA) and PEG-containing monomers such as poly(ethylene glycol) methyl ether methacrylate (PEG- MEM). The silicone hydrogels were characterized using Fourier transform infrared spectroscopy (FT-IR), electron spectroscopy of chemical analysis (ESCA), and scanning electron microscopy (SEM). Water absorbance, water contact angle and light transmittance of the silicone hydrogels were evaluated. The experiments of protein adsorption were also carried out to evaluate the protein adsorption in tears. The peak intensity of C-O bond was increased by the incorporation of PEG-containing monomers and thus PEG incorporation into silicone hydrogels could be confirmed. Phase separation was not shown by the SEM observation of the cross-section of silicone hydrogels. Water absorbancy was increased, while water contact angle and light transmittance were decreased with increasing incorporation of the PEG-containing monomers. The absorption of proteins in tears, albumin, lysozyme and $\gamma$-globulin, on the surface of silicone hydrogels was decreased with increasing incorporation of the PEG-containing monomers.

Synthesis of Polymer Materials Containing Platinum Nanoparticles and Their Application for Contact Lenses (백금 나노입자를 포함한 고분자재료의 합성 및 콘택트렌즈로의 응용)

  • Ye, Ki-Hun;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • Platinum nanoparticles were added to a mixture of HEMA (2-hydroxyethyl methacrylate), NVP (N-vinyl pyrrolidone) and MMA (methyl methacrylate) in a mould at various concentrations. The resulting mixture was copolymerized by heating at $70^{\circ}C$ for 40 min, $80^{\circ}C$ for 40 min, and $100^{\circ}C$ for 40 min, respectively. The physical properties of contact lens were then measured. The oxygen transmissibility of $9{\sim}15{\times}10^{-9}$ cm/s mL $O_2$/mL ${\times}$ mmHg, water content of 34.22~35.52%, refractive index of 1.432~1.435, visible transmittance of 88.3~91.2% and tensile strength of 0.141~0.152 kgf were obtained. The addition of platinum nanoparticles to the polymer allowed the contact lens to have various colors without artificial coloring agents. The polymer materials satisfied the physical properties required to produce contact lenses, making the material suitable to be applied as a functional material for ophthalmological purposes.

Suspension Polymerization of Thermally Expandable Microcapsules with Core-Shell Structure Using the SPG Emulsification Technique: Influence of Crosslinking Agents and Stabilizers (SPG 유화법을 사용하여 현탁중합한 코어-쉘 구조를 갖는 열팽창 마이크로캡슐 제조: 가교제 및 안정제의 영향)

  • Bu, Ji Hyun;Kim, Yeongseon;Ha, Jin Uk;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.78-87
    • /
    • 2015
  • With aiming to prepare microcapsules having a particle size of $30-50{\mu}m$, thermally expandable capsules with relatively uniform particle sizes consisting of a n-octane/poly(acrylonitrile-co-methyl methacrylate) core/shell structure were synthesized using SPG membrane emulsification and suspension polymerization. Four steric stabilizers and five crosslinking agents were employed. When poly(vinyl alcohol) as a stabilizer was used, the prepared capsules showed a smooth and regular morphology and the liquid hydrocarbon (n-octane) was well encapsulated in the core. When 1,4-butnaediol methacrylate (BDDMA) was used as a crosslinker, the uniform capsules with the average diameter of $36.8{\mu}m$ were synthesized. The capsules prepared with 0.05 mol% BDDMA showed the best encapsulation efficiency.

Optophysical Properties of Hydrogel Ophthalmic Lenses Containing Gallate Group (Gallate group이 포함된 친수성 안의료용 렌즈의 광물리적 특성)

  • Park, Se-Young;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.725-730
    • /
    • 2012
  • HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate; cross-linker), MMA (methyl methacrylate) and AA (acrylic acid) were copolymerized with ethyl gallate and propyl gallate as additives in the presence of AIBN (2,2'-azobisisobutyronitrile; initiator). The measurement of physical properties of the produced copolymers exhibited that refractive index, water content, visible transmittance, tensile strength, and contact angle were in the range of 1.433-1.435, 38.71-38.99%, 85.4-88.8%, 0.2468-0.2740 kgf and $49.77-36.29^{\circ}$, respectively. The transmittances of the copolymers were measured to be in the range of 49.0-7.4% and 71.0-43.4% for UV-B and UV-A, respectively, indicating that the copolymers have UV-blocking effect. The produced copolymers containing ethyl gallate and propyl gallate satisfied the basic physical properties required for the fabrication of hydrogel contact lenses. The copolymers showed an increase of wettability and UV-blocking effects while having no significant change in water content compared to the gallate-free copolymers.

The Preparation and Characteristics of High Solids Acrylic/Polyisocyanate Coatings (하이솔리드 아크릴/폴리이소시아네이트 도료의 제조와 도막 특성)

  • 김대원;황규현;정충호;우종표;박홍수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.520-528
    • /
    • 2000
  • New high solid acrylic resins (BMHA) containing 70% of solids content have been synthesized. The environmental friendly high solid coatings (BNHS) were prepared by using these acrylic resins and polyisocyanates. The BMHA was obtained by introducing a new functional group, acetoacetoxyethyl methacrylate (AAEM), in the copolymerization of n-butyl acrylate, methyl methacrylate, and 2-hydroxyethyl acrylate. Lowering T$_{g}$ and increasing the AAEM amount in the BMHA resulted in a high value of conversion. There was no difference in conversion with the variations of OH values. In the next step, high solid BNHS coatings were prepared by the curing reaction between BMHA and polyisocyanate at room temperature. The properties of these coatings were evaluated especially for the application of automotive top-coating materials. The introduction of AAEM in the BNHS enhanced the abrasion resistance and solvent resistance of the coatings, which indicated the possible use of BNHS coatings for top-coating materials of automobile..

  • PDF

Synthesis and Applications of Reactive Polymer Modifiers for Asphalt(1) (아스팔트용 반응성 고분자 개질제 합성 및 적용(1))

  • Hwang, Ki-Seob;Ahn, Won-Sool;Suh, Soong-Hyuck;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • This study is on the synthesis of reactive polymer modifiers by emulsion polymerization to improve properties of asphalt for paving. Styrene, methyl methacrylate (MMA), isoprene and glycidyl methacrylate (GMA) which has epoxy ring to react with carboxyl group of asphaltene were used to synthesize polymer modifiers. Modifiers with various composition were tested miscibility with asphalt. Modifiers which showed good miscibility with asphalt were investigated by DSC for $T_g$. Existence of epoxy rings and their reaction with asphaltene wore investigated by FTIR. Molecular structures of synthesized modifiers were confirmed by $^1H-NMR$. The synthesized modifiers which showed good miscibility had their $Tg's$ in the range of $37.5{\sim}56.5^{\circ}C$ and had isoprene contents of 30 wt%. They showed good miscibility in the 1 and 2 wt% concentrations, but not in the 3 wt% concentration.