Browse > Article
http://dx.doi.org/10.7317/pk.2015.39.1.78

Suspension Polymerization of Thermally Expandable Microcapsules with Core-Shell Structure Using the SPG Emulsification Technique: Influence of Crosslinking Agents and Stabilizers  

Bu, Ji Hyun (Department of Chemical Engineering, Inha University)
Kim, Yeongseon (Department of Chemical Engineering, Inha University)
Ha, Jin Uk (Environmental Materials & Components R&D Center, Korea Automotive Technology Institute)
Shim, Sang Eun (Department of Chemical Engineering, Inha University)
Publication Information
Polymer(Korea) / v.39, no.1, 2015 , pp. 78-87 More about this Journal
Abstract
With aiming to prepare microcapsules having a particle size of $30-50{\mu}m$, thermally expandable capsules with relatively uniform particle sizes consisting of a n-octane/poly(acrylonitrile-co-methyl methacrylate) core/shell structure were synthesized using SPG membrane emulsification and suspension polymerization. Four steric stabilizers and five crosslinking agents were employed. When poly(vinyl alcohol) as a stabilizer was used, the prepared capsules showed a smooth and regular morphology and the liquid hydrocarbon (n-octane) was well encapsulated in the core. When 1,4-butnaediol methacrylate (BDDMA) was used as a crosslinker, the uniform capsules with the average diameter of $36.8{\mu}m$ were synthesized. The capsules prepared with 0.05 mol% BDDMA showed the best encapsulation efficiency.
Keywords
SPG emulsification; suspension polymerization; microcapsule; crosslinking agent; stabilizer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Jonsson, O. Nordin, E. Malmstrom, and C. Hammer, Polymer, 47, 3315, (2006).   DOI   ScienceOn
2 J. N. Yoo, Polymer Science and Technology, 2, 294, (1991).
3 M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, J. Appl. Polym. Sci., 117, 384 (2010).
4 Y. Kawaguchi and T. Oishi, J. Appl. Polym. Sci., 93, 505 (2004).   DOI   ScienceOn
5 M. Jonsson, D. Nystrom, O. Nordin, and E. Malmstrom, Eur. Polym. J., 45, 2374 (2009).   DOI   ScienceOn
6 M. Jonsson, O. Nordin, A. L. Kron, and E. Malmstrom, J. Appl. Polym. Sci., 118, 1219 (2010).
7 L. Chu, R. Xie, J. Zhu, W. Chen, T. Yamaguchi, and S. Nakao, J. Colloid Interf. Sci., 265, 187 (2003).   DOI   ScienceOn
8 A. Rahman, M. E. Dickinson, and M. M. Farid, Mater. Renew. Sustain. Energy, 1, 1 (2012).   DOI
9 J. Lee, D. R. Hwang, S. E. Shim, and Y. Rhym, Macromol. Res., 18, 1142 (2010).   DOI   ScienceOn
10 H. Yuyama, T. Hashimoto, G. Ma, M. Nagai, and S. Omi, J. Appl. Polym. Sci., 78, 1025 (2000).   DOI
11 S. Omi, Colloids Surf. Physicochem. Eng. Aspects, 109, 97 (1996).   DOI   ScienceOn
12 W. Li, G. Song, G. Tang, X. Chu, S. Ma, and C. Liu, Energy, 36, 785 (2011).   DOI   ScienceOn
13 Y. Kawaguchi, Y. Itamura, K. Onimura, and T. Oishi, J. Appl. Polym. Sci., 96, 1306 (2005).   DOI   ScienceOn
14 T. Nakashima, M. Shimizu, and M. Kukizaki, Adv. Drug Deliv. Rev., 45, 47 (2000).   DOI   ScienceOn
15 L. Li, P. Thangamathesvaran, C. Yue, K. Tam, X. Hu, and Y. Lam, Langmuir, 17, 8062 (2001).   DOI   ScienceOn
16 P. J. Dowding and B. Vincent, Colloids Surf. Physicochem. Eng. Aspects, 161, 259 (2000).   DOI   ScienceOn
17 D. Kim, K. Lee, and S. Choe, Macromol. Res., 17, 250 (2009).   DOI   ScienceOn
18 O. Okay, Polymer, 40, 4117 (1999).   DOI   ScienceOn