• 제목/요약/키워드: methyl ketone

검색결과 230건 처리시간 0.028초

Synthesis and pesticidal activity of ricinine derivatives (Ricinine 유도체(誘導體)의 합성(合成) 및 농약활성(農藥活性))

  • Kwon, Oh-Kyung;Lim, Soo-Kil;Hong, Su-Myeong;Lee, Sung-Eun;Kyung, Suk-Hun
    • The Korean Journal of Pesticide Science
    • /
    • 제2권1호
    • /
    • pp.24-31
    • /
    • 1998
  • Chemical derivative synthesis of ricinine, an active compound of Ricinus communis which showed high mortality against brown planthopper (Nilaparvata lugens), was performed to improve its pesticidal activity and the toxicity of 12 synthetic derivatives against major insect pests and phytopathogenic fungi were examined. Carbamate derivatives of ricinine could be synthesized from the precursor of ricinine, chloronorricinine and norricinine, whereas the derivatives were not synthesized from chlororicinic acid and ricinic acid having ketone group of pyridine ring. In organophosphates, reaction with oxon type of phosphate gave better yield than thiono type. Among the organophosphate derivatives of ricinine, thiono type of derivative structure gave $96.3%{\sim}100%$ mortality of the brown planthopper and the two-spotted spider mite (Tetranychus urticae) at 500 ${\mu}g/ml$ level. On the other hand, carbamate derivatives did not show insecticidal activity. In the fungicidal activity of ricinine derivatives, the derivative having amino radical at the 2 position of ricinine gave 85 to 100% of mycelium growth inhibition effect against ten major plant pathogens at the 200 ${\mu}g/ml$ level. In particular, the control value of the derivative on the rice blast (Pyricularia grisea) and barley powdery mildew (Erysiphe graminis) at the 250 ${\mu}g/ml$ level in vivo under greenhouse conditions was 92% and 96%, respectively.

  • PDF

Functional and Volatile Flavor Components in Myungtae(Alaska pollack) sikhae (마른명태 식해의 향기성분과 기능성)

  • Koo, Tae-Ho;Zhang, Yun-Bin;Choi, Hee-Jin;Woo, Hi-Seoh;Son, Gyu-Mok;Choi, Cheong
    • Journal of the Korean Society of Food Culture
    • /
    • 제17권5호
    • /
    • pp.535-542
    • /
    • 2002
  • The volatile compounds of Myungtae (Alaska pollack) sikhae obtained by simultaneous steam distillation and extraction(SDE) apparatus were separated by gas chromatography(GC) and gas chromatography mass spectrometry(GC/MS). The totals of 155 volatile flavor components was identified in traditional Kyungsangdo Myungtae (Alaska pollack) sikhae, respectively. ${\alpha}$-Zingihirene(11.03%) (E)-di-2-propenyl disulfide(7.95%) ${\beta}$-cironellol(6.02%), methyl allyl disulfide(3.58%), cryptone(3.39%), camphene(3.23%), pentanol(3.21%), penadecanal(2.66%) and ${\beta}$-phellandrene(2.06%) were contained as the main compounds of Myungtae shikae. The fraction obtained from sikhae were tested for electron donating ability, angiotensin converting enzyme and xanthine oxidase inhibitory activity. There was no electron donating abilities$(SC_{50})$ of hexane and water fraction. On the other hand, the abilities of ethylacetate fraction and butanol fraction showed $310.64\;{\mu}g/mL,\;1096.49\;{\mu}g/mL$, respectively. Angiotensin converting enzyme inhibitory activities$(IC_{50})$ of ethylacetate fraction and butanol fraction were 1.623 mg/mL, 1.303 mg/mL, respectively. Xanthine oxidase inhibitory activities$(IC_{50})$ of ethylacetate fraction and butanol fraction were 3.591 mg/mL, 2.083 mg/mL, respectively.

Volatile Components of Green Tea(Camellia sinensis L. var. Yabukita) by Purge and Trap Headspace Sampler (Purge와 Trap Headspace Sampler를 이용한 녹차의 휘발성 성분)

  • 이재곤;권영주;장희진;곽재진;김옥찬;최영현
    • The Korean Journal of Food And Nutrition
    • /
    • 제10권1호
    • /
    • pp.25-30
    • /
    • 1997
  • Volatile components of green tea were isolated by purge and trap headspace method and were analyzed by GC and GC/MSD. And ten headspace volatiles were compared with volatiles isolated by simultaneous distillation-extraction(SDE) method. A total of 99 components were identified in the green tea volatile components, from which 88 components were identified in the headspace volatiles, contained 20 alcohols, 30 hydrocarbons, 21 aldehydes, 10 ketones, 2 acids and 5 miscellaneous components. The major components were low boiling components, such as methyl butanal(3.1%), 1-penten-3-ol(5.48%), 2-penten-1-ol(2.89%), hexanal(5.77%), heptanal(1.90%), and ere 2,4-eptadienal(4.28%), linalool(2.27%), 2,6-dimethyl cyclohexanol(2.57%), $\alpha$-pinene(1.52%), caryophyllene(1.70%), and carbonyl compounds, such as $\alpha$-ionone(2.62%), $\beta$-ionone(2.98%), $\beta$-cyclocitral(2.0%). On the other hand SDE volatiles, from which 64 components were identified, contained 16 alcohols, 16 ydrocarbons, 15 aldehydes, 10 ketones, 3 acids and 4 miscellaneous components. The major components were alcohols, such as, benzyl alcohol(3.79%), linalool(9.52%), terpineol(2.16%), geraniol(2.75%), nerolidol(6.50%), ketones, such as $\alpha$-ionone(1.77%), $\beta$-ionone(4.80%), geranyl acetone(1.82%) and acids, such as hexanoic acid(1.45%), nonanoic acid(1.11%).

  • PDF

Functional and Volatile Flavor Compounds in Traditional Kyungsando Squid sikhe (경상도 전통마른오징어 식해의 향기성분 및 기능성)

  • Choi, Cheong;Lee, Hee-Duck;Choi, Hee-Jin;Son, Jun-Ho;Kim, Sung;Son, Gyu-Mok;Cha, Woen-Suep
    • Korean Journal of Food Science and Technology
    • /
    • 제33권3호
    • /
    • pp.345-352
    • /
    • 2001
  • The volatile compounds of traditional Kyungsando squid sikhe were identified by GC-MS. The amount of ${\alpha}-zingibirene$ among identified volatile compounds was 19.73 mg/kg. The major volatile compounds of sikhe were (Z)-Di-2-propenyl disulfide, ${\alpha}-curcumene$, methyl allyl disulfide, (E, E)-a-farnesene, pentanol, z-citral, 3-ethyl-1,2-dithi-5-ene-${\beta}-elemene$, ${\beta}-elemene$, acetic acid, and ${\beta}-phellandrene$. The volatile compounds of sikhe were compose of 49 including hydrocarbone groups, 15 aldehydes groups, 33 alcohol groups kinds, 11 ketone and ester groups. The fraction obtained from sikhe were tested for electron donating ability, angiotensin converting enzyme inhibitory activity and xanthine oxidase inhibitory activity. There were no electron donating abilities$(SC_{50})$ in hexane and water soluble fractions. On the other hand, the angiotensin converting enzyme abilities of ethylacetate and butanol soluble fractions were $310.64\;{\mu}g/mL$ and $1096.49\;{\mu}g/mL$, respectively. Angiotensin converting enzyme inhibitory activities$(IC_{50})$ of ethylacetate butanol soluble fractions were 1.623 mg/mL and 1.303 mg/mL, respectively. Xanthine oxidase inhibitory activities$(IC_{50})$ of ethylacetate fraction and butanol soluble fractions were 3.591 mg/mL and 2.083 mg/mL, respectively.

  • PDF

Fragrance Chemicals in the Essential Oil of Mentha arvensis Reduce Levels of Mental Stress (박하(Mentha arvensis) 향료의 향기성분이 정신적 스트레스 완화에 미치는 효과)

  • Cho, Haeme;Sowndhararajan, Kandhasamy;Jung, Ji-Wook;Jhoo, Jin-Woo;Kim, Songmun
    • Journal of Life Science
    • /
    • 제23권7호
    • /
    • pp.933-940
    • /
    • 2013
  • The aim of this work was to determine the chemical composition of essential oil from aerial partsof Mentha arvensis L. f. piperascens (MAO) and to evaluate the effect of its fragrant chemicals on electroencephalographic (EEG) activity of human brain. The MAO was obtained by supercritical $CO_2$ extraction. The maximum yield was 2.38% at conditions of $70^{\circ}C$ and 200 bar. There were 32 volatile chemicals with 6 alcohols (67.11%), 13 hydrocarbons (17.05%), 9 esters (11.50%), 2 ketones (7.16%), 1 oxide (2.77%), and 1 aldehyde (0.56%). The major components were (Z,Z,Z)-9,12,15-octadecatrien-1-ol (50.06%), 2-hydroxy-4-methoxyacetophenone (7.50%), and 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one (6.60%). Results of the EEG study showed that inhalation of MAO significantly changed the EEG power spectrum values of relative gamma, relative fast alpha, and spectral edge frequency 90%. During the inhalation of MAO, the value of relative fast alpha was significantly increased (p<0.05). On the other hand, the values of gamma and the spectral edge frequency 90% were significantly decreased (p<0.05). The present study suggests that fragrant chemicals of essential oil of M. arvensis reduce the level of mental stress and that they could be used in the treatment of psychophysiological disorders.

The chemical composition and biological activities of volatile flavor components of Elsholtzia splendens (꽃향유 전초의 향기성분 분석과 생리활성 평가)

  • Jeong, Jae Hoon;Lim, Heung Bin
    • Analytical Science and Technology
    • /
    • 제18권6호
    • /
    • pp.500-510
    • /
    • 2005
  • This study was conducted to investigate the chemical composition of essential oil, absolute and oleoresin isolated from Elsholtzia splendens and their biological activities. Yields of essential oil, absolute and oleoresin extracted from Elsholtzia splendens were 0.28%, 12.45% and 9.95%, respectively. The major component was 2-cyclohexen-1-one in essential oil, methyl linolenate in absolute and 9,12,15-octadecatrienoic acid in oleoresin. Essential oil and oleoresin showed the inhibitory activities in enzyme-dependent, enzyme-independent and autooxidative lipid peroxidation system. $EC_{50}$ values in nuetral red uptake (NRU) assays for the exposure times of 24 h were $46.4{\mu}g/ml$, $681.7{\mu}g/ml$ and $17.6{\mu}g/ml$ in essential oil, absolute and oleoresin, and oleoresins showed the cytotoxic effect at the only high dose. Any mutagenic and antibiotic activity did not show in absolute and oleoresin, but, there were mutagenic and antibiotic activities only when treated with essential oil $500{\mu}g/ml$ above in Ames test. Essential oil and oleoresin might be somewhat effective in prolongating the ciliostasis of rat trachea.

A study on the calibration characteristics of organic fatty acids designated as new offensive odorants by cryogenic trapping-thermal desorption technique (유기지방산 신규악취물질에 대한 저온농축 열탈착방식 (Thermal desorber)의 검량특성 연구)

  • Ahn, Ji-Won;Kim, Ki-Hyun;Im, Moon-Soon;Ju, Do-Weon
    • Analytical Science and Technology
    • /
    • 제22권6호
    • /
    • pp.488-497
    • /
    • 2009
  • In this study, analytical methodology for several organic fatty acids (OFA: propionic acid (PA), butyric acid (BA), isovaleric acid (IA), and valeric acid (VA)) designated as new offensive odorants in Korea (as of year 2010) was investigated along with some odorous VOCs (styrene, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, and isobutyl alcohol). For this purpose, working standards (WS) containing all of these 13 compounds were loaded into adsorption tube filled with Tenax TA, and analyzed by gas chromatography (GC) system thermal desorber interfaced with. The analytical sensitivities of organic fatty acids expressed in terms of detection limit (both in absolute mass (ng) and concentration (ppb)) were lower by 1.5-2 times than other compounds (PA: 0.24 ng (0.16 ppb), BA: 0.19 ng (0.11 ppb), IA: 0.15 ng (0.07 ppb), and VA: 0.28 ng (0.13 ppb)). The precision of BA, IA, and VA, if assessed in terms of relative standard error (RSE), maintained above 5%, while the precison of other compounds were below 5%. The reproducibility of analysis improved with the aid of internal standard calibration (PA: $1.1{\pm}0.4%$, BA: $10{\pm}0.46$, IA; $12{\pm}0.3%$, VA: $4{\pm}0.1%$), respectively. The results of this study showed that organic fatty acid can be analyzed using adsorption tube and thermal desorber in a more reliable way to replace alkali absorption method introduced in the odor prevention law of the Korea Ministry of Environment (KMOE).

Removal of Volatile Organic Compounds using Candida tropicalis Immobilized on Polymer Gel Media in an Airlift Loop Bioreactor (Candida tropicalis 포괄고정 담체를 적용한 Airlift Loop Bioreactor에서의 복합 휘발성유기화합물 제거)

  • NamGung, Hyeong-Kyu;Ha, Jeong-Hyub;Hwang, Sun-Jin;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제31권8호
    • /
    • pp.603-610
    • /
    • 2009
  • This research was performed to improve removal efficiency of toluene and methyl ethyl ketone (MEK) using Candida tropicalis, one of the yeast species. An airlift loop bioreactor (ALB) was employed to enhance the capability of mass transfer for toluene and MEK from the gas phase to the liquid, microbial phase. Polymer gel media made from PAC, alginate and PEG was applied for the effective immobilization of the yeast strain on the polymer gel media. The experimental results indicated that the mass transfer coefficient of toluene without polymer gel media was 1.29 $min^{-1}$ at a gas retention time of 15 sec, whereas the KLa value for toluene was increased to 4.07 $min^{-1}$ by adding the media, confirming the enhanced mass transfer of volatile organic compounds between the gas and liquid phases. The removal efficiency of toluene and MEK by using yeast-immobilized polymer gel media in the ALB was greater than 80% at different pollutant loading rates (5, 10, 19 and 37 g/$m^3$/hr for toluene, 4.5, 8.9, 17.8 and 35.1 g/$m^3$/hr for MEK). In addition, an elimination capacity test conducted by changing inlet loading rates stepwise demonstrated that maximum elimination capacities for toluene and MEK were 70.4 and 56.4 g/$m^3$/hr, respectively.

Desorption of organic Compounds from the Simulated Soils by Soil Vapor Extraction (인공토양으로부터 토양증기추출법에 의한 유기화합물의 탈착 현상에 관한 실험 연구)

  • 이병환;이종협
    • Journal of Korea Soil Environment Society
    • /
    • 제3권2호
    • /
    • pp.101-114
    • /
    • 1998
  • Soil vapor extraction (SVE) is known to be an effective process to remove the contaminants from the soils by enhancing the vaporization of organic compounds using forced vapor flows or applying vacuum through soils. Experiments are carried out to investigate the effects of the organic contaminants, types of soils, and water contents on the removal efficiency with operating time. In the study, simulated soils include the glass bead which has no micropore, sand and molecular sieve which has a large volume of micropores. As model organic pollutants, toluene, methyl ethyl ketone, and trichloroethylene are selected. Desorption experiments are conducted by flowing nitrogen gas. Under the experimental conditions, it is found that there are linear relationships between logarithm of removal efficiency and logarithm of number of pore volumes. The number of pore volumes are defined as the total amount of air flow through the soil column divided by the pore volume of soil column. For three organic compounds studied, the removal rate is slow for no water content, while the number of pore volumes for removal of organic compounds are notably reduced for water contents up to 37%. For the removal of dense organic compound, such as trichloroethylene, a large number of pore volumes are needed. Also, the effects of the characteristics of simulated soils on the removal efficiency of organic compounds are studied. After the characterization of soil surface, porosity of soil columns and types of contaminants, the results could provide a basis for the design of SVE process.

  • PDF

Identification of Irradiation -induced Volatile Marker Compounds in Irradiated Red Pepper Powder (방사선조사 고추가루로부터 휘발성 표지물질의 구명)

  • Kim, Hun;Ahn, Jun-Suck;Sin, Yeong-Min;Lee, Yong-Ja;Lee, Kyung-Hae;Byun, Myung-Woo;Cha, Yong-Jun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제34권2호
    • /
    • pp.236-242
    • /
    • 2005
  • To develop a new detection method using irradiation-induced volatile marker compounds of red pepper powder (RP), the volatile compounds of irradiated RP (0, 1, 3, 5, and 10 kGy) were analyzed by purge and trap (P&T)/solid phase microextraction (SPME)/gas chromatography/mass spectrometry (GC/MS) methods. A total of 51 and 31 compounds were detected in IRP by SPME and P&T methods, respectively. Among these, 25 compounds, which were composed of 4 hydrocarbons, 7 aldehydes, 1 ketone, 3 alcohols, 4 aromatic compounds, 2 esters and 4 miscellaneous compounds, showed irradiation dependent manner with significant positive correlation (p<0.01 or p<0.05) between irradiation dose and relative concentration. However, all compounds except 1,3-bis(1,1-dimethylethyl)benzene were not suitable as marker compounds because of their low determination coefficients ($R^2$<0.80) between irradiation dose and their concentrations, and detectablilty in nonirradiated sample. Therefore, only one compound, 1,3-bis(1,1-dimethylethyl)benzene, was tentatively identified as a volatile marker compound to detect irradiated RP.