• Title/Summary/Keyword: methoxylated

Search Result 23, Processing Time 0.028 seconds

Differential Effects of Methoxylated p-Coumaric Acids on Melanoma in B16/F10 Cells

  • Yoon, Hoon Seok;Lee, Nam-Ho;Hyun, Chang-Gu;Shin, Dong-Bum
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • As an approach to search for chemopreventive agents, we tested p-coumaric acid, 3-methoxy-p-coumaric acid (ferulic acid), and 3,5-dimethoxy-p-coumaric acid (sinapic acid) in B16/F10 melanoma cells. Intracellular melanin contents were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and cytotoxicity of the compounds were examined by lactate dehydrogenase (LDH) release. p-Coumaric acid showed inhibitory effect on melanogenesis, but ferulic acid increased melanin content, and sinapic acid had almost no effect on melanogenesis. Treatment with ferulic acid resulted in a 2 to 3 fold elevation in the production of melanin. Correlatively, cell viability decreased in a dose-dependent manner when treated with ferulic acid. However, ferulic acid did not affect the LDH release from the cells. Treatment with sinapic acid resulted in a 50~60% elevation in the release of LDH when treated with a $200{\mu}g/mL$ concentration and showed neither cytostasis nor increase of melanin synthesis in a dose-dependent manner. Taken together, p-coumaric acid inhibits melanogenesis, ferulic acid induces melanogenesis, and sinapic acid exerts cytotoxic effects in B16/F10 murine melanoma cells. The results indicate that the addition of methoxy groups to p-coumaric acid shows the melanogenic or cytotoxic effects in melanoma cells compared to the original compound. Therefore, this study suggests the possibility that methoxylated p-coumaric acid, ferulic acid can be used as a chemopreventive agent.

Changes of Some Flavonoids in the Peel of Satsuma Mandarin (Citrus unshiu) Harvested during Maturation

  • Kim, Young-Cheon;Koh, Kyung-Soo;Koh, Jeong-Sam
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.143-146
    • /
    • 2001
  • Eight flavonoids, including rutin, naringin, hesperidin, quercetin, hesperetin, nobiletin, 3,5,6,7,8,3',4'-methoxylated flavone, and tangeretin, in the peels of satsuma mandarin (Citrus unshiu) species of Halla, Gungcheon, Hungjin, Namgam-20, Illnam-1, and Chungdo harvested between August and December were analyzed through HPLC. Hesperidin content of Halla harvested during early maturation was 28.70 mg/g, and was the highest among the tested citrus fruits. Rutin content of Hungjin harvested during early maturation was 2.66 mg/g. Naringin in all citrus species and hesperetin in Halla, Gungchun, Namgam-20, and Chungdo were only detected in the peel of fruits harvested during early maturation. Hesperidin and rutin were detected mainly in all citrus species, and other flavonoids in trace. Flavonoid content in the peel of fruits was high during early maturation. Flavonoid contents in the peels of all fruit samples were generally high in the early stage of maturation, which then decreased rapidly.

  • PDF

Dual roles of estrogen metabolism in mammary carcinogenesis

  • Chang, Min-Sun
    • BMB Reports
    • /
    • v.44 no.7
    • /
    • pp.423-434
    • /
    • 2011
  • A female hormone, estrogen, is linked to breast cancer incidence. Estrogens undergo phase I and II metabolism by which they are biotransformed into genotoxic catechol estrogen metabolites and conjugate metabolites are produced for excretion or accumulation. The molecular mechanisms underlying estrogen-mediated mammary carcinogenesis remain unclear. Cell proliferation through activation of estrogen receptor (ER) by its agonist ligands and is clearly considered as one of carcinogenic mechanisms. Recent studies have proposed that reactive oxygen species generated from estrogen or estrogen metabolites are attributed to genotoxic effects and signal transduction through influencing redox sensitive transcription factors resulting in cell transformation, cell cycle, migration, and invasion of the breast cancer. Conjuguation metabolic pathway is thought to protect cells from genotoxic and cytotoxic effects by catechol estrogen metabolites. However, methoxylated catechol estrogens have been shown to induce ER-mediated signaling pathways, implying that conjugation is not a simply detoxification pathway. Dual action of catechol estrogen metabolites in mammary carcinogenesis as the ER-signaling molecules and chemical carcinogen will be discussed in this review.

New Flavan 3,4-Diol Derivatives from the Heartwood of Robinia Pseudoacacia

  • Bae, Young-Soo;Ham, Yeon-Ho;Kim, Jin-Kyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.25-28
    • /
    • 2000
  • Two flavan 3,4-diol derivatives were isolated from the heartwood of Robinia pseudoacacia and characterized by spectroscopic methods including $^1H$ and $^{13}C$ NMR and positive FAB-MS. The structures were identified as 2,3-trans-3,4-cis-3,4,7,3',4',5'-hexahydroxy flavan, one of isomeric leucorobinetinidins, and 4'-methoxy-2,3-trans-3,4-cis-3,4,7,3',5'-pentahydroxy flavan.

  • PDF

Changes of Major Constituents by Soaking of Citrus platymamma Peel with Spirit Solution (병귤과피의 주정 침출 중 유용성분의 변화)

  • Lee, Sang-Hyup;Kim, Jong-Hyun;Jeong, Hee-Chan;Yang, Young-Taek;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.154-159
    • /
    • 2007
  • In order to prepare liqueur of Citrus platymamma, 500 g dried peel was soaked in 10 l (5%, w/v) of $30{\sim}95%$ ethanol concentration for 70 days. Changes in pH was $5.19{\sim}4.80$ with 30% ethanol concentration, and the pH was decreased as ethanol concentration decreases for 10 days after soaking. Color a-value was decreased and color b-value was increased according to higher ethanol concentration. Extract was $2.00{\sim}2.19%$ (w/v) with $30{\sim}70%$ ethanol concentration. Acid content was $0.18{\sim}0.21%$ (v/v) with $30{\sim}70%$ ethanol concentration, while $0.13{\sim}0.15%$ (v/v) with 95% ethanol concentration. The contents of fructose and glucose was increased with lower ethanol concentration, and sucrose content was decreased with longer soaking time. Main flavonoids were narirutin, hesperidin, nobiletin, 3,5,6,7,8,3'4'-methoxylated flavone, and tangeretin. Most flavonoids were extracted more than 80% of ethanol for $3{\sim}5$ days soaking. Total polyphenol was $628.8{\sim}711.2$ ${\mu}g/ml$ with $30{\sim}70%$ ethanol concentration for 20 days soaking. Therefore, to prepare Citrus platymamma peel liqueur, it is necessary to soak the material in $50{\sim}70%$ ethanol concentration for 20 days.

Isolation and Identification of Flavonoids from Ethanol Extracts of Artemisia vulgaris and Their Antioxidant Activity (쑥의 에탄올 추출물에 함유된 Flavonoid들의 분리 및 동정과 이들의 항산화 효과)

  • Lee, Sang-Jun;Chung, Ha-Yull;Lee, In-Kyoung;Yoo, Ick-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.815-822
    • /
    • 1999
  • Twenty one flavonoids were isolated from ethyl acetate layer of aqueaus EtOH extracts of Artemisia vulgaris and identified as tricin, jaceosidine, eupafolin, diosmetin, chrysoeriol, homoeriodictyol, isorhamnetin, apigenin, eriodictyol, luteolin, luteolin 7-glucoside, kaempferol 3-glucoside, kaempferol 7-glucoside, kaempferol 3-rhamnoside, kaempferol 3-rutinside, quercetin, quercetin 3-glucoside, quercetin 3-galactoside, quercetrin, quercetin 7-glucoside, rutin, and vietexin. The inhibitory activity for all purified flavonoids were examined against lipid peroxidation in rat liver microsome. All examined flavonoids showed considerable antioxidant activity. Among them, $IC_{50}$ value of apigenin, luteolin, isorhamnetin, quercetin, and eriodictyol were showed higher than that of vitamin E used as positive control. And methoxylated flavonoids, tricin, eupafolin, jaceosidine, diosmetin, and isorhamnetin showed considerable antioxidant activity. Each $IC_{50}$ values were shown at 0.9, 1.0, 1.4, 1.0, and $0.7\;{\mu}g/mL$, respectively.

  • PDF

Biotransformation of a Fungicide Ethaboxam by Soil Fungus Cunninghamella elegans

  • PARK, MI-KYUNG;KWANG-HYEON LIU;YOONGHO LIM;YOUN-HYUNG LEE;HOR-GIL HUR;JEONG-HAN KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Metabolism of a new fungicide ethaboxam by soil fungi was studied. Among the fungi tested, Cunninghamelia elegans produced metabolites from ethaboxam, which were not found in the control experiments. M5, a major metabolite from ethaboxam was firmly identified as N-deethylated ethaboxam by LC/MS/MS and NMR. N-Deethylated ethaboxam has been found as a single metabolite in in vitro metabolism with rat liver microsomes. Ml was proved to be 4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboxamide (ETC) by comparing with the authentic compound. In addition, M2, M3, and M4, and M6 were tentatively Identified by LC/MS/MS as hydroxylated and methoxylated ethaboxams, respectively. Production of the major metabolite, N-deethylated ethaboxam, by the fungus suggested that C. elegans would be an efficient eukaryotic microbial candidate for evaluating xenobiotic-driven mammalian risk assessment.

Enzymatic Extraction of Lemon Pectin by Endo-Polygalacturonase from Aspergillus niger

  • Contreras-Esquivel, Juan C.;Voget, Claudio E.;Vita, Carolina E.;Espinoza-Perez, J.D.;Renard, Catherine M.G.C.
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.163-167
    • /
    • 2006
  • Pectin was enzymatically extracted from industrial lemon pomace by using an endo-polygalacturonase from Aspergillus niger as a processing aid and compared to pectin extraction by hot hydrochloric acid. The yield of pectin was 17.6 and 20.2% with enzymatic and acidic treatments, respectively. The molecular weight distribution did not vary greatly between the samples extracted with enzyme or acid. Large differences in charge density were observed, however, when the samples were analyzed by anionic-exchange chromatography. Pectin extracted by the enzymatic treatment indicated higher charge density than that obtained by hydrochloric acid. The higher charge density could due to the presence of endogenous lemon pectinesterase, which was activated at low pH 4.5 in situ conditions during the process of enzymatic extraction, leading to low methoxylated pectin with a higher charge density.

Tracheal Muscle Smoothing Effect of Nobiletin Isolated from Korean Chung-pi (한국산 청피에서 분리한 Nobiletin의 기관지 평활근 이완효과)

  • Back, Soon-Ok;Han, Jong-Hyun;Chun, Hyun-Ja;Han, Doo-Seuk;Han, Sung-Soo;Kim, Il-Kwang
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.205-212
    • /
    • 2002
  • Bioactive compounds of Chung-pi methoxy flavonoids were isolated by column chromatography and preparative chromatography, and investigated on the smoothing effect for the tracheal smooth muscle of rats. The tracheal smooth muscles of rats were treated with acetylcholine ($ED_{50}:3${\times}$10^{-6}M$) and with chromatographic fractions. We found that six-methoxylated flavonoid (nobiletin) was the most active compound fro the smoothing effect of which the contracted tracheal smooth muscle was screened with further separated ethyl acetate fraction. This result shows how nobiletin and its analogues could be using as a promising drug of bronchial asthma.

Pectin from Passion Fruit Fiber and Its Modification by Pectinmethylesterase

  • Contreras-Esquivel, Juan Carlos;Aguilar, Cristobal N.;Montanez, Julio C.;Brandelli, Adriano;Espinoza-Perez, Judith D.;Renard, Catherine M.G.C.
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • Passion fruit fiber pectin gels represent a new alternative pectin source with potential for food and non-food applications on a commercial scale. Pectic polysaccharides were extracted from passion fruit (Passiflora edulis) fiber using citric acid as a clean catalyst and autoclaved for 20 to 60 min at $121^{\circ}C$. The best condition of pectin yield with the highest molecular weight was obtained with 1.0% of citric acid (250 mg/g dry passion fruit fiber pectin) for 20 min of autoclaving. Spectroscopic analyses by Fourier transform infrared, enzymatic degradation reactions, and ion-exchange chromatography assays showed that passion fruit pectin extracted for 20 min was homogeneous high methoxylated pectin (70%). Gel permeation analysis confirmed that the pectin extract obtained by autoclaving by 20 min showed higher molecular weights than those autoclaved for 40 and 60 min. Passion fruit pectin extracted for 20 min was enzymatically modified with fungal pectinmethylesterase to create restructured gels. Short autoclave treatment (20 min) with citric acid as extractant resulted in a significant increase of gel strength, improving pectin extraction in terms of functionality. The treatment of solubilized material (pectic polysaccharides) in the presence of insoluble material (cellulose and hemicellulose) with pectinmethylesterase and calcium led to the creation of a stiffer passion fruit fiber pectin gel, while syneresis was not observed.