• Title/Summary/Keyword: methods: numerical

Search Result 5,359, Processing Time 0.033 seconds

On the numerical solution of the point reactor kinetics equations

  • Suescun-Diaz, D.;Espinosa-Paredes, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1340-1346
    • /
    • 2020
  • The aim of this paper is to explore the 8th-order Adams-Bashforth-Moulton (ABM8) method in the solution of the point reactor kinetics equations. The numerical experiment considers feedback reactivity by Doppler effects, and insertions of reactivity. The Doppler effects is approximated with an adiabatic nuclear reactor that is a typical approximation. The numerical results were compared and discussed with several solution methods. The CATS method was used as a benchmark method. According with the numerical experiments results, the ABM8 method can be considered as one of the main solution method for changes reactivity relatively large.

Prediction of Thermal Expansion Coefficients for Fiber-Reinforced Composites by Direct Numerical Simulation (직접 수치 모사법을 이용한 섬유 강화 복합재료의 열팽창계수 예측)

  • Nam, Youn-Sic;Oh, Min-Hwan;Kim, Kwang-Sik;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.771-777
    • /
    • 2007
  • In this paper, thermal expansion coefficients of fiber-reinforced composite materials are predicted by direct numerical simulation. From comparing the predicted results with experimental results, it is confirmed that direct numerical simulation gives similar results to the previously proposed methods while minimizing artificial assumptions. Additionally trend of variation in thermal expansion coefficients is investigated according to the fiber volume fraction.

Structural Analysis of a Cavitary Region Created by Femtosecond Laser Process

  • Fujii, Takaaki;Goya, Kenji;Watanabe, Kazuhiro
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.5-10
    • /
    • 2015
  • Femtosecond laser machining has been applied for creating a sensor function in silica glass optical fibers. Femtosecond laser pulses make it possible to fabricate micro structures in processed regions of a very thin glass fiber line because femtosecond laser pulses can extremely minimize thermal effects. With the laser machining to optical fiber using a single shot of 210-fs laser at a wavelength of 800 nm, it was observed that a processed region surrounded a thin layer which seemed to be a hollow cavity monitored by scanning electron microscopy (SEM). This study aims at a theoretical investigation for the processed region by using a numerical analysis in order to embed sensing function to optical fibers. Numerical methods based finite element method (FEM) has been used for an optical waveguide modeling. This report suggests two types modeling and describes a comparative study on optical losses obtained by the experiment and the numerical analysis.

Development of a Ddistributed Numerical Control System (DNC 시스템 개발)

  • Kim, S.H.;S.W.;S.B.;J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.19-29
    • /
    • 1995
  • The basic technology for a production system represented by design, machining, assembly, and inspection, is machining technology such as CNC machine tools. etc. Direct Numerical Control, that effeciently manages NC programs is developing into Distributed Numerical Control that increases the utilization of the machining cell. It has the ability of monitoring and control, in real time, for CNC and periperial equipment. In this study, we develop a Distributed Numerical Control system that has real time and multitasking operation capability for the machining cell with various CNC's. With the consideration of economy, generalization and extension, the system is interfaced with CNC machine tools and periperial device using RS-485 network and RS-232C communication methods.

  • PDF

YSIM for City and Regional Planning ("도시 및 지역계획 지원을 위한 YSIM(Yangsuk's SIMulation)")

  • 강양석
    • Journal of Korean Society of Transportation
    • /
    • v.5 no.1
    • /
    • pp.59-74
    • /
    • 1987
  • A prediction is an indispensable element to research of Social Science, especially in Regional planning, City planning, and Transportation planning. Since 1930s, varieties of prediction methods have been developed. In the 1980s, numerical models have been used by high-developed computers. even though the numerical models can be figured mathematically, it could not be applied practically due to it's expertness and complicateness. And even professional planners often can not use their ideas which are valuable experiences in prediction process, because they are not knowledgable for numerical models. The YSIM developed by author, is available as follows. i)Numerical modeling of professional experiences ii)Providing a foundation of large-scale model iii) Understanding of research object structure The YSIM make use of matrix to identify the system structure which is similar to the Cross Impact Method. To evaluated the YSIM availabilities, it is compared with the early developed methodologies such as KSIM, QSIM, and SPIN. As the result, it was confirmed that YSIM was more accurate in the prediction. The algorithms in YSIM is programmed for use of PCs.

  • PDF

A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method (강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구)

  • 윤종훈;김낙수;임용택;이준두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF

Numerical Analysis of Soil Nail System (소일네일링 구조물의 수치해석)

  • Yu, Nam-Jae;Kim, Young-Gil;Park, Byung-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.115-125
    • /
    • 1999
  • Current design and analyzing methods about soil nailing structures, developed on the basis of results obtained from experiments in laboratory or in field and numerical analyses, have applied different interaction mechanisms between the reinforced nails and the surrounding ground, and this different safety factors against failure have been obtained. They might be proper approached if the assumptions about rigidity of nails and ground conditions are met with actual conditions occurred in field. Otherwise, they would result in designing on analyzing in inappropriate ways so that it is needed to evaluate the validity of them. Therefore, overall behavior and failure mechanism about soil nailing system were investigated by performing numerical method. Using a finite element analysis, parametric studies were made to examine the importance of the various parameters and their effects on the soil nailing system. The numerical technique of FEM, implemented with Hyperbolic constitutive model, was also used to analyze the test results.

  • PDF

FITTED MESH METHOD FOR SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS

  • Shanthi V.;Ramanujam N.;Natesan S.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.49-65
    • /
    • 2006
  • A robust numerical method for a singularly perturbed second-order ordinary differential equation having two parameters with a discontinuous source term is presented in this article. Theoretical bounds are derived for the derivatives of the solution and its smooth and singular components. An appropriate piecewise uniform mesh is constructed, and classical upwind finite difference schemes are used on this mesh to obtain the discrete system of equations. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are provided to illustrate the convergence of the numerical approximations.

NUMERICAL STUDY ON THE TURBOPUMP INDUCER (터보펌프 인듀서에 대한 수치해석적 연구)

  • Noh J.G.;Choi C.H.;Hong S.S.;Kim J.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.16-20
    • /
    • 2006
  • The present study focuses on the flow analysis of a turbo pump inducer by performing both numerical and experimental methods. The head rise, efficiency and detailed flow fields such as outlet flow angles, pressure and velocity vectors are measured and compared with the computational data. Generally a good agreement is obtained between numerical and experimental results. However, some discrepancies are observed due to complex flow structures inside the inducer. Future calculations with an advanced turbulence model and a dense computational grid needs to be performed to obtain accurate numerical solution for the detailed flow fields.

Numerical analysis results of the cathodic protection for the underground steel pipe by anode installation method

  • Jeong, Jin-A;Choo, Yeon-Gil;Jin, Chung-Kuk;Park, Kyeong-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1212-1216
    • /
    • 2014
  • This study aims to find out the best anode location for buried pipelines. Numerical simulation program known as CATPRO (Elsyca, Belgium) were used for confirming the best location of anodes and the effects of impressed current cathodic protection system. Applied conditions for numerical simulation were similar to on-site environmental conditions for optimal application of cathodic protection system. Used criterion of cathodic protection was NACE SP 0169, which describes that minimum requirement for cathodic protection is -850mV vs. CSE. Various layouts for anodes' installation were applied, which were distance between anodes, anode installation location, and applied current. The areas where cathodic protection potential was lower than -850mV vs. CSE was limited up to 50m from anode installation locations. It was founded numerical analysis obtain cost-effective and efficient cathodic protection methods before design and application the impressed cathodic protection system to on-site environment.