References
- Y.A. Chao, A. Attard, A resolution of the stiffness problem of reactor kinetics, Nucl. Sci. Eng. 90 (1985) 40-46. https://doi.org/10.13182/NSE85-A17429
- J. Sanchez, On the numerical solution of the point reactor kinetics equations by generalized Runge-Kutta methods, Nucl. Sci. Eng. 103 (1989) 94-99. https://doi.org/10.13182/NSE89-A23663
- A.E. Aboanber, Analytical solution of the point kinetics equations by exponential mode analysis, Prog. Nucl. Energy 42 (2003) 179-197. https://doi.org/10.1016/S0149-1970(03)80008-2
- L.B. Quintero, CORE: a numerical algorithm to solve the point kinetics equations, Ann. Nucl. Energy 35 (2008) 2136-2138. https://doi.org/10.1016/j.anucene.2008.07.002
- H. Li, W. Chen, L. Luo, Q. Zhu, A new integral method for solving the point reactor neutron kinetics equations, Ann. Nucl. Energy 36 (4) (2009) 427-432. https://doi.org/10.1016/j.anucene.2008.11.033
- D. McMohan, A. Pierson, A Taylor Series Solution of the Reactor Point Kinetic Equations, 2010 arXiv preprint Retrieved from arXiv: 1001.4100 http://arxiv.org/ftp/arxiv/papers/1001/1001.4100.pdf.
- A.A. Nahla, Taylor series method for solving the nonlinear point kinetics equations, Nucl. Eng. Des. 241 (2011) 1592-1595. https://doi.org/10.1016/j.nucengdes.2011.02.016
- B.D. Ganapol, A highly accurate algorithm for the solution of the point kinetics equations, Ann. Nucl. Energy 62 (2013) 564-571. https://doi.org/10.1016/j.anucene.2012.06.007
- H.T. Kim, Y. Park, N. Kazantzis, A.G. Parlos, F.P. Vista IV, K.T. Chong, A numerical solution to the point kinetic equations using Taylor-Lie series combined with a scaling and squaring technique, Nucl. Eng. Des. 272 (2014) 1-10. https://doi.org/10.1016/j.nucengdes.2013.12.066
- A. Patra, S.S. Ray, A numerical approach based on Haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Ann. Nucl. Energy 68 (2014) 112-117. https://doi.org/10.1016/j.anucene.2014.01.008
- Y.M. Hamada, Trigonometric Fourier-series solutions of the point reactor kinetics equations, Nucl. Eng. Des. 281 (2015) 142-153. https://doi.org/10.1016/j.nucengdes.2014.11.017
- M.A. Razak, K. Devan, T. Sathiyasheela, The modified exponential time differencing (ETD) method for solving the reactor point kinetics equations, Ann. Nucl. Energy 76 (2015) 193-199. https://doi.org/10.1016/j.anucene.2014.09.020
- A.A. Nahla, Numerical treatment for the point reactor kinetics equations using theta method, eigenvalues and eigenvectors, Prog. Nucl. Energy 85 (2015) 756-763. https://doi.org/10.1016/j.pnucene.2015.09.008
- D.D. Suescun, P.M. Narvaez, P.H. Lozano, Calculation of nuclear reactivity using the generalised Adams-Bashforth-Moulton predictor-corrector method, Kerntechnik 81 (2016) 86-93. https://doi.org/10.3139/124.110591
- D.D. Suescun, C.D. Rasero, P.H. Lozano, Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations, Kerntechnik 82 (2017) 674-677. https://doi.org/10.3139/124.110842
- C. Yun, P. Xingjie, L. Qing, W. Kan, A numerical solution to the nonlinear point kinetics equations using Magnus expansion, Ann. Nucl. Energy 89 (2016) 84-89. https://doi.org/10.1016/j.anucene.2015.11.021
- A.E. Aboanber, Y.M. Hamada, Power series solution (PWS) of nuclear reactor dynamics with Newtonian temperature feedback, Ann. Nucl. Energy 30 (2003) 1111-1122. https://doi.org/10.1016/S0306-4549(03)00033-1
- M. Kinard, E.J. Allen, Efficient numerical solution of the point kinetics equations in nuclear reactor dynamics, Ann. Nucl. Energy 31 (2004) 1039-1051. https://doi.org/10.1016/j.anucene.2003.12.008
- A.A. Nahla, Analytical solution to solve the point reactor kinetics equations, Nucl. Eng. Des. 240 (2010) 1622-1629. https://doi.org/10.1016/j.nucengdes.2010.03.003
- A.A. Nahla, An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects, Ann. Nucl. Energy 38 (2011) 2810-2817. https://doi.org/10.1016/j.anucene.2011.08.021
- B. Ganapol, P. Picca, A. Previti, D. Mostacci, The solution of the point kinetics equations via converged accelerated Taylor series (CATS), in: Advances in Reactor Physics-Linking Research, Industry and Education (PHYSOR 2012), Knoxville, Tennessee, USA, April 15-20, 2012, 2012.
- P. Picca, R. Furfaro, B.D. Ganapol, A highly accurate technique for the solution of the non-linear point kinetics equations, Ann. Nucl. Energy 58 (2013) 43-53. https://doi.org/10.1016/j.anucene.2013.03.004
- S.Q.B. Leite, M.T. de Vilhena, B.E. Bodmann, Solution of the point reactor kinetics equations with temperature feedback by the ITS2 method, Prog. Nucl. Energy 91 (2016) 240-249. https://doi.org/10.1016/j.pnucene.2016.05.001
- J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiley and Sons Inc, New York, USA, 1976.
- D.L. Hetrick, Dynamics of Nuclear Reactors, University of Chicago Press, Chicago and London, 1971.
- J.C. Butcher, Numerical Methods for Ordinary Differential Equations, second ed., John Wiley & Sons Ltd, 2008.
- T.M. Sutton, B.N. Aviles, Diffusion theory methods for spatial kinetics calculations, Prog. Nucl. Energy 30 (1996) 119-182. https://doi.org/10.1016/0149-1970(95)00082-U
- B. Ganapol, Numerical Data provided by B, D. Ganapol, 2009.
Cited by
- An efficient exponential representation for solving the two-energy group point telegraph kinetics model vol.166, 2020, https://doi.org/10.1016/j.anucene.2021.108698