• Title/Summary/Keyword: method detection limit

Search Result 1,352, Processing Time 0.023 seconds

Comparison of Multivariate CUSUM Charts Based on Identification Accuracy for Spatio-temporal Surveillance (시공간 탐지 정확성을 고려한 다변량 누적합 관리도의 비교)

  • Lee, Mi Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • Purpose: The purpose of this study is to compare two multivariate cumulative sum (MCUSUM) charts designed for spatio-temporal surveillance in terms of not only temporal detection performance but also spatial detection performance. Method: Experiments under various configurations are designed and performed to test two CUSUM charts, namely SMCUSUM and RMCUSUM. In addition to average run length(ARL), two measures of spatial identification accuracy are reported and compared. Results: The RMCUSUM chart provides higher level of spatial identification accuracy while two charts show comparable performance in terms of ARL. Conclusion: The RMCUSUM chart has more flexibility, robustness, and spatial identification accuracy when compared to those of the SMCUSUM chart. We recommend to use the RMCUSUM chart if control limit calibration is not an urgent task.

GC-FID Analysis of Tranylcypromine in Rat Urine (GC-FID에 의한 Rat 뇨중 Tranylcypromine의 분석)

  • 강건일;전순영
    • YAKHAK HOEJI
    • /
    • v.29 no.5
    • /
    • pp.260-267
    • /
    • 1985
  • A gas chromatography with flame ionization detection was developed to measure tranylcypromine in rat urine. The method involves extraction of the drug and the internal standard, phenylpropylamine from the urine using ethyl acetate and back extraction into 0.5N $H_{2}SO_{4}$. Following final extraction using dichloromethane, both the drug and the internal standard were converted to trifluoroacetyl derivatives and analyzed using a column of 3% SE-30 on 80/100 mesh Chromosorb W(HP). A calibration curve was constructed in the range of $5~50{\mu}g$tranylcypromine sulfate in 0.5ml urine and found to be linear. The detection limit was $2{\mu}g$. The tranylcypromine could be analyzed with the percent recovery of $100.81{\pm}8.13$ (SD) ina concentration range of $8-40{\mu}g$ in 0.5ml urine. When 0.4mmol/kg dose of the drug was administered through, an oral route, excretion percent of tranylcypromine in rat urine over 36hr was found to be $11.90{\pm}6.04$ (SD) for tranyleypromine sulfate and $2.23{\pm}0.63$ (SD) for benzyl trans-2-phenylcyclopropanecarbamate.

  • PDF

Electrochemical Determination of Capsaicin by Ionic Liquid Composite-Modified Electrode

  • Kim, Dong-Hwan;Nam, Sungju;Kim, Jaeyoon;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 2019
  • An electrochemical detection method for capsaicin has been developed using ionic liquid (IL) doped graphene-titania-Nafion composite-modified electrode. The combination of IL (1-hexyl-3-methylimidazolium with hexafluorophosphate counter ion) in the composite-modified electrode resulted in a significantly increased electrochemical response for capsaicin compared to that obtained at the corresponding electrode without IL. The increased electrochemical signal could be ascribed to the decreased electron transfer resistance through the composite film and also to the effective accumulation of capsaicin on the electrode surface due to ${\pi}-{\pi}$ interaction of the imidazole groups of IL with the aromatic rings of capsaicin. The present IL composite-modified electrode can detect capsaicin with a concentration range from $3.0{\times}10^{-8}M$ to $1.0{\times}10^{-5}M$ with a detection limit of $3.17{\times}10^{-9}M$ (S/N = 3). The present sensor showed good reproducibility (RSD = 3.2%).

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

Spinel Nanoparticles ZnCo2O4 as High Performance Electrocatalyst for Electrochemical Sensing Antibiotic Chloramphenicol

  • Van-Cuong Nguyen;HyunChul Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.152-160
    • /
    • 2024
  • In this study, ZnCo2O4 nanoparticles were synthesized via the coprecipitation method using different annealing temperatures from 200℃ to 800℃. By varying the treatment temperature, the morphology changed from amorphous to tetragonal, and finally to polygonal particles. As temperature increased, the sizes of the nanoparticles also changed from 5 nm at 200℃ to approximately 500 nm at 800℃. The fabricated material was used to modify the working electrode of a screen-printed carbon electrode (SPE), which was subsequently used to survey the detection performance of the antibiotic, chloramphenicol (CAP). The electrochemical results revealed that the material exhibits a good response to CAP. Further, the sample that annealed at 600℃ displayed the best performance, with a linear range of 1-300 μM, and a limit of detection (LOD) of 0.15 μM. The sensor modified with ZnCo2O4 also exhibited the potential for utilitarian application when the recovery in a real sample was above 97%.

A Recognition Method for Moving Objects Using Depth and Color Information (깊이와 색상 정보를 이용한 움직임 영역의 인식 방법)

  • Lee, Dong-Seok;Kwon, Soon-Kak
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.681-688
    • /
    • 2016
  • In the intelligent video surveillance, recognizing the moving objects is important issue. However, the conventional moving object recognition methods have some problems, that is, the influence of light, the distinguishing between similar colors, and so on. The recognition methods for the moving objects using depth information have been also studied, but these methods have limit of accuracy because the depth camera cannot measure the depth value accurately. In this paper, we propose a recognition method for the moving objects by using both the depth and the color information. The depth information is used for extracting areas of moving object and then the color information for correcting the extracted areas. Through tests with typical videos including moving objects, we confirmed that the proposed method could extract areas of moving objects more accurately than a method using only one of two information. The proposed method can be not only used in CCTV field, but also used in other fields of recognizing moving objects.

Quantitative Analysis of Phosphinothricin-N-acetyltransferase in Genetically Modified Herbicide Tolerant Pepper by an Enzyme-Linked Immunosorbent Assay

  • Shim, Youn-Young;Shin, Weon-Sun;Moon, Gi-Seong;Kim, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.681-684
    • /
    • 2007
  • An immunoassay method was developed to quantitatively detect phosphinothricin-N-acetyltransferase (PAT) encoded by the Bialaphos resistance (bar) gene in genetically modified (GM) pepper. The histidine-tagged PAT was overexpressed in Escherichia coli M15 (pQE3l-bar) and efficiently purified by $Ni^{2+}$ affinity chromatography. A developed sandwich enzyme-linked immunosorbent assay (S-ELISA) method (detection limit: $0.01{\mu}g/ml$) was 100-fold more sensitive than a competitive indirect ELISA (CI-ELISA) method or Western blot analysis in detecting the recombinant PAT. In real sample tests, PAT in genetically modified herbicide-tolerant (GMHT) peppers was successfully quantified [$4.9{\pm}0.4{\mu}g/g$ of sample (n=6)] by the S-ELISA method. The S-ELISA method developed here could be applied to other GMHT crops and vegetables producing PAT.

Analysis of Agrochemical Residues in Tobacco Using QuEChERS Method by GC-MS/MS

  • Lee, Jeong-Min;Jang, Gi-Chul;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.132-139
    • /
    • 2007
  • This study was performed to apply the more rapid and accurate sample preparation, and the high selectivity and sensitivity of the analyte detection by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). QuEChERS (quick, easy, cheap, effective, rugged and safe) method was validated for 49 agrochemicals in the CORESTA Agrochemical Advisory Committee guide and amenable to GC-MS/MS determination. In QuEChERS method, the effects of sorbents (PSA, $C_{18}$ and GCB) and matrix of the analytes in tobacco types (flue-cured, burley and oriental) were investigated. MS/MS acquisition provided high specificity and selectivity for agrochemicals and low limit of quantification. QuEChERS by using PSA alone and the matrix-matched standards gave good recoveries and RSD values in three types of tobaccos. QuEChERS method was no needed to be complex clean-up procedure and would be used as the fast and easy method for agrochemical residue analysis in tobacco.

Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

  • Barzegar, Mohsen;Jabbari, Ali;Esmaeili, Majid
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1261-1264
    • /
    • 2003
  • A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and $25{\circ}C$ is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples.

Analytical method for analyzing formaldehyde using 2, 4-DNPH and gas chromatography/FID, NPD (2,4-DNPH와 가스크로마토그래프를 이용한 포름알데히드 분석방법)

  • Jeong, Jee Yeon;Park, Seung Hyun;Yi, Gwang Yong;Oh, Se Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.1
    • /
    • pp.126-146
    • /
    • 2000
  • To develop and evaluate formaldehyde measurement method using 2,4-dinitro-phenylhydrazine (2,4-DNPH) coated sampler and gas chromatography, laboratory test and field test were conducted. Results of this study are as follows. Limit of detection(LOD) of measurement methods, HPLC-UVD, GC-NPD and GC-FID, is $0.008{\mu}g/m{\ell}$ $0.060{\mu}g/m{\ell}$, $0.472{\mu}g/m{\ell}$ respectively. Coefficiency of measurement methods, HPLC-UVD, GC-NPD and GC-FID, is 0.008, 0.009, 0.020 respectively. Desorption efficiency of sep-pak xposure aldehyde sampler and sorbent sample tube is 1.05(range : 0.99 - 1.12), 1.02(range : 0.99 - 1.06) respectively. Samples of sorbent sample tube and sep-pak xposure aldehyde sampler turned out to be stored at refrigerator, according to storage test results. Measurement methods of HPLC-UVD, GC-NPD, GC-FID, according to results of precision for the combined sampling and analytical procedure, became acceptable to OSHA evaluation standard. Field test using exposure chamber met the NIOSH overall uncertainty recommendation(less than 25%). Overall uncertainty of Sepak-HPLC(UVD), Tube-GC(NPD), Tube-GC(FID) is 11.0% - 17.0%. Consequently gas chromatography(GC-NPD, GC-FID) and high performance liquid chromatography(EPA TO-11) using 2,4-DNPH coated sampler for formaldehyde measurement turned out to be suitable to measure personal formaldehyde exposure at workplaces.

  • PDF