DOI QR코드

DOI QR Code

Spinel Nanoparticles ZnCo2O4 as High Performance Electrocatalyst for Electrochemical Sensing Antibiotic Chloramphenicol

  • Van-Cuong Nguyen (Department of Nanoscience and Engineering, Inje University) ;
  • HyunChul Kim (Green Car Technology Research Center, Department of Future Automotive Engineering, Kongju National University)
  • Received : 2023.06.07
  • Accepted : 2023.09.15
  • Published : 2024.02.29

Abstract

In this study, ZnCo2O4 nanoparticles were synthesized via the coprecipitation method using different annealing temperatures from 200℃ to 800℃. By varying the treatment temperature, the morphology changed from amorphous to tetragonal, and finally to polygonal particles. As temperature increased, the sizes of the nanoparticles also changed from 5 nm at 200℃ to approximately 500 nm at 800℃. The fabricated material was used to modify the working electrode of a screen-printed carbon electrode (SPE), which was subsequently used to survey the detection performance of the antibiotic, chloramphenicol (CAP). The electrochemical results revealed that the material exhibits a good response to CAP. Further, the sample that annealed at 600℃ displayed the best performance, with a linear range of 1-300 μM, and a limit of detection (LOD) of 0.15 μM. The sensor modified with ZnCo2O4 also exhibited the potential for utilitarian application when the recovery in a real sample was above 97%.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program and Regional Innovation Strategy (RIS) through the National Research Foundation of Korea (NRF) funded by Ministry of Education and the Ministry of Science and ICT. (2021R1I1A3048752, 2021RIS-004).

References

  1. J. Ehrlich, Q. R. Bartz, R. M. Smith, D. A. Joslyn, and P. R. Burkholder, Science, 1947, 106(2757), 417.
  2. H. M. Feder Jr, C. Osier, and E. G. Maderazo, Arch Intern Med., 1981, 141(5), 597-598. https://doi.org/10.1001/archinte.141.5.597
  3. H. C. Meissner and A. L. Smith, Pediatrics, 1979, 64(3), 348-356. https://doi.org/10.1542/peds.64.3.348
  4. J. C. Hanekamp and G. Frappoti, and K. Lieman, Env. Liability, 2003, 11, 209-221.
  5. H. Kikuchi, T. Sakai, R. Teshima, S. Nemoto, and H. Akiyama, Food Chem., 2017, 230, 589-593. https://doi.org/10.1016/j.foodchem.2017.03.071
  6. S. Liu, J. Bai, Y. Huo, B. Ning, Y. Peng, S. Li, D. Han, W. Kang, and Z. Gao, Biosens. Bioelectron., 2020, 149, 111801.
  7. G. Yang and F. Zhao, Biosens. Bioelectron., 2015, 64, 416-422. https://doi.org/10.1016/j.bios.2014.09.041
  8. H. Feng, J. Li, Y. Liu, Z. Xu, Y. Cui, M. Liu, X. Liu, L. He, J. Jiang, and D. Qian, J. Electroanal. Chem., 2022, 922, 116755.
  9. M. R. Ali, M. S. Bacchu, M. R. Al-Mamun, M. S. Ahommed, M. A. Saad Aly, and M. Z. H. Khan, RSC Adv., 2021, 11(26), 15565-15572. https://doi.org/10.1039/D1RA02450G
  10. P. Zhang, N. Zhang, L. Jing, B. Hu, X. Yang, and X. Ma, Int. J. Electrochem. Sci., 2019, 14(9), 9337-9346. https://doi.org/10.20964/2019.09.69
  11. H. Xu, J. Yuan, G. He, and H. Chen, Coord. Chem. Rev., 2023, 475, 214869.
  12. M. Amiri and H. Mahmoudi-Moghaddam, Microchem. J., 2021, 160, 105663.
  13. J. Dong, L. Wen, H. Liu, H. Yang, J. Zhao, X. Luo, C. Hou, and D. Huo, Sci. Total Environ., 2023, 855, 158878.
  14. T. Huang, C. Zhao, R. Zheng, Y. Zhang, and Z. Hu, Ionics, 2015, 21, 3109-3115. https://doi.org/10.1007/s11581-015-1491-2
  15. Y. Zhang, Y. Cheng, Y. Zhou, B. Li, W. Gu, X. Shi, and Y. Xian, Talanta, 2013, 107, 211-218. https://doi.org/10.1016/j.talanta.2013.01.012
  16. J. Zhang, S. Cui, Y. Ding, X. Yang, K. Guo, and J.-T. Zhao, Biosens. Bioelectron., 2018, 112, 177-185. https://doi.org/10.1016/j.bios.2018.03.021
  17. A. Sinhamahapatra, D. Bhattacharjya, and J.-S. Yu, RSC Adv., 2015, 5(47), 37721-37728. https://doi.org/10.1039/C5RA06286A
  18. M. Yadav, V. Ganesan, R. Gupta, D. K. Yadav, and P. K. Sonkar, Microchem. J., 2019, 146, 881-887. https://doi.org/10.1016/j.microc.2019.02.025
  19. N. Sebastian, W.-C. Yu, and D. Balram, Inorg. Chem. Front., 2019, 6(1), 82-93. https://doi.org/10.1039/C8QI01000E
  20. T. N. Pham, N. V. Cuong, N. X. Dinh, H. V. Tuan, V. N. Phan, N. T. Lan, M. H. Nam, T. D. Thanh, V. D. Lam, N. V. Quy, T. Q. Huy, M.-H. Phan, and A.-T. Le, J. Electrochem. Soc., 2021, 168(2), 026506.
  21. H. Feng, J. Li, Y. Liu, Z. Xu, Y. Cui, M. Liu, X. Liu, L. He, J. Jiang, and D. Qian, J. Electroanal. Chem., 2022, 922, 116755.
  22. X. Zhang, Y.-C. Zhang, and J.-W. Zhang, Talanta, 2016, 161, 567-573. https://doi.org/10.1016/j.talanta.2016.09.013
  23. N. A. Shad, S. Z. Bajwa, N. Amin, A. Taj, S. Hameed, Y. Khan, Z. Dai, C. Cao, and W. S. Khan, J. Hazard. Mater., 2019, 367, 205-214. https://doi.org/10.1016/j.jhazmat.2018.12.072
  24. K.-P. Wang, Y.-C. Zhang, X. Zhang, and L. Shen, SN Appl. Sci., 2019, 1, 157.
  25. L. Zhang, M. Yin, X. Wei, Y. Sun, Y. Chen, S. Qi, X. Tian, J. Qiu, and D. Xu, Diam. Relat. Mater., 2022, 128, 109311.
  26. S. Gao, Y. Zhang, Z. Yang, T. Fei, S. Liu, and T. Zhang, J. Alloys Compd., 2021, 872, 159687.
  27. W. Yi, Z. Li, C. Dong, H.-W. Li, and J. Li, Microchem. J., 2019, 148, 774-783. https://doi.org/10.1016/j.microc.2019.05.049