• Title/Summary/Keyword: methanogenic reactor

Search Result 48, Processing Time 0.019 seconds

Anaerobic Digestion of Distillery Wastewater in a Two-phase UASB System (이상 UASB 공정을 이용한 주정폐수의 혐기성소화)

  • Shin, Hang Sik;Bae, Byung Uk;Paik, Byung Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.185-192
    • /
    • 1990
  • A two-phase UASB system was operated for high-rate treatment of concentrated distillery wastewater. The phase separation was obtained by adjusting pH in each reactor. When influent SS concentration was 4.1/g/l, the first phase UASB reactor was effectively operated up to the loading rate of 16.5kg $COD/m^3.day$, producing 3.9g HAc/l.day. In the methanogenic UASB reactor, loading rate up to 44kg $COD/m^3.day$ could be applied while removing 80% of influent COD with a specific gas production of 16.5 l/l. day. After the formation granular sludge in both reactors, it was possible to maintain the appropriate pH in the first phase only by recirculating the effluent from methanogenic phase without the addition of alkaline chemicals.

  • PDF

Denitrification of Anaerobic Sludge in Hybrid Type Anaerobic Reactor(II): Glucose as Substrate (Hybrid type 반응조에서의 혐기성 슬러지의 탈질(II): 기질이 글루코스인 경우)

  • Shin, Hang-Sik;Kim, Ku-Yong;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.196-206
    • /
    • 2000
  • Methanogenesis and denitrification in an upflow sludge baffled filter (UBF) reactor were studied using glucose as a fermentative substrate. Experiments were carried out to investigate how to reduce ammonification by changing alkalinity and $COD/NO_3-N$ ratio. Characteristics of granular sludges were examined by specifics methanogenic activity(SMA) and specific denitrification rate(SDR) tests. Microstructures of granules were examined using a scanning electron microscopy(SEM). It was found that COD was removed efficiently owing to the diverse microorganisms. In nitrate conversion, not only $COD/NO_3-N$ ratio but also influent alkalinity played important role in the ratio of denitrification and ammonification of nitrate. This reactor achieved over 95% COD and 99% nitrate removal efficiencies when influent contained 4000 mgCOD/L and $700mgNO_3-N/L$ at the hydraulic retention time of 24 hours. As $COD/NO_3-N$ ratio decreased, granular methanogenic activities using acetate and butyrate as substrates increased while activities using propionate and glucose decreased. There were three types in granules according to the surface color; gray, yellowish gray, and black. Gray or yellowish gray-colored granules were composed two layers, which were composed of black inner side and gray or yellowish gray surface substances. SEM illustrated that both were rod-type and cocci-type microorganisms resembling Methanothrix sp. and Methanococci sp. This study showed that by controlling the influent alkalinity and $COD/NO_3-N$ ratio, ammonification and denitrification could be manipulated.

  • PDF

Performance Evaluation of ABR and ASBR for Anaerobic Methane Fermentation (ABR과 ASBR 형태에 따른 혐기성 메탄 발효 운전 성능 평가)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • This study was conducted to evaluate the performance of methane fermentation from effluent of hydrogen fermentation reactor in anaerobic baffled reactor (ABR) and anaerobic sequencing batch reactor (ASBR). Two reactors were operated at organic loading rate of $1.0kg\;COD/m^3{\cdot}d$ and hydraulic retention time (HRT) of 20 day. Methane production rates of ABR and ASBR for start-up periods were 0.04 L/L/d and 0.19 L/L/d, respectively, whereas maximum methane production rates of ABR and ASBR were 0.25 L/L/d and 0.31 L/L/d, respectively. Removal rates of chemical oxygen demand (COD) in ABR and ASBR for start-up periods were 89% and 92%, respectively. After startup periods, removal rates of COD and volatile solids (VS) in ABR and ASBR were maintained over 90%. The specific methanogenic activity (SMA) increased as microorganism acclimated to the substrate.

Microbial Community Diversity in Anaerobic Reactors Digesting Turkey, Chicken, and Swine Wastes

  • Ziganshina, Elvira E.;Belostotskiy, Dmitry E.;Shushlyaev, Roman V.;Miluykov, Vasili A.;Vankov, Petr Y.;Ziganshin, Ayrat M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1464-1472
    • /
    • 2014
  • The microbial community structures of two continuous stirred tank reactors digesting turkey manure with pine wood shavings as well as chicken and swine manure were investigated. The reactor fed with chicken/swine wastes displayed the highest organic acids concentration (up to 15.2 g/l) and ammonia concentration (up to 3.7 g/l ammonium nitrogen) and generated a higher biogas yield (up to $366ml/g_{VS}$) compared with the reactor supplied with turkey wastes (1.5-1.8 g/l of organic acids and 1.6-1.7 g/l of ammonium levels; biogas yield was up to $195ml/g_{VS}$). The microbial community diversity was assessed using both sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Additionally, methanogens were analyzed using methyl coenzyme M reductase alpha subunit (mcrA) genes. The bacterial community was dominated by members of unclassified Clostridiales with the prevalence of specific clostridial phylotypes in each reactor, indicating the effect of the substrate type on the community structure. Of the methanogenic archaea, methanogens of the genus Methanosarcina were found in high proportions in both reactors with specific methanosarcinas in each reactor, whereas the strict hydrogenotrophic methanogens of Methanoculleus sp. were found at significant levels only in the reactor fed with chicken/swine manure (based on the analyses of 16S rRNA gene). This suggests that among methanogenic archaea, Methanosarcina species which have different metabolic capabilities, including aceticlastic and hydrogenotrophic methanogenesis, were mainly involved in anaerobic digestion of turkey wastes.

Treatment of Food Waste Leachate using Lab-scale Two-phase Anaerobic Digestion Systems (실험실 규모 2상 혐기성 소화를 이용한 음식물 쓰레기 탈리액의 처리)

  • Heo, Ahn-Hee;Lee, Eun-Young;Kim, Hee-Jun;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.12
    • /
    • pp.1231-1238
    • /
    • 2008
  • This study was performed to evaluate the treatability of food waste leachate using lab-scale two-phase anaerobic digestion system. Effects of influent pH, hydraulic retention time (HRT), and recycle of methanogenic reactor effluent to the thermophilic acidogenic reactors were investigated. For methanogenic reactors, effects of internal solids recycle and temperature were studied. Performance of the acidogenic reactors was stable under the conditions of influent pH of 6.0 and HRT of 2 d with the recycle of methanogenic reactor effluent, and acidification and VS removal efficiency were about 30% and 40%, respectively. Up to the organic loading rate (OLR) of 7 g COD/L/d, effluent SCOD values of mesophilic and thermophilic methanogenic reactors either lower or kept the same with the internal solids recycle. Also, decreasing tendency in specific methane production (SMP) due to the organic loading increase became diminished with the internal solids recycle. Mesophilic methanogenic reactors showed higher TCOD removal efficiency and SMP than thermophilic condition under the same OLR as VSS was always higher under mesophilic condition. In sum, thermophilic acidogenesis-mesophilic methanogenesis system was found to be better than thermophilic-thermophilic system in terms of both organic removal and methane production.

Anaerobic Treatment of Landfill Leachate Using a Upflow Anaerobic Sludge Blanket Reactor (UASB 반응조를 이용한 매립지 침출수의 혐기성 처리)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.151-160
    • /
    • 2006
  • Anaerobic treatment of landfill leachate was studied to investigate the behaviors of pollutant and the characteristics of microorganism for 10 months. The upflow anaerobic sludge blanket (UASB) reactor achieved about 90% chemical oxygen demand (COD) removal at organic loading rates(OLR) up to $20kgCOD/m^3.d$. At higher OLR ($8-20kgCOD/m^3.d$), the propionate concentration increased, indicating that converting propionate to acetate was the rate-limiting step. Nevertheless, increase in the precipitate inside and on the surface of granules as well as on the wall of the reactor resulted in operational problems. The main inorganic precipitate in the granule was calcium compound. Although specific methanogenic activity (SMA) was not affected seriously in this study, metals had to be removed prior to anaerobic treatment so as to be free from the excessive inorganic accumulation that resulted in operational problems.

  • PDF

Effects of the Redox Potential of the Acidogenic Reactor on the Performance of a Two-Stage Methanogenic Reactor

  • Phae, Chae-Gun;Lee, Wan-Kyu;Kim, Byung-Hong;Koh, Jong-Ho;Kim, Sang-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.30-35
    • /
    • 1996
  • Distillery wastewater was used in a thermophilic laboratory-scale two stage anaerobic digester to test the effects of the redox potential of the first acidogenic reactor on the performance of the system. The digester consisted of first a acidogenic reactor and the an upflow anaerobic sludge blanket (UASB) reactor. The digestor was operated at a hydraulic retention time (HRT) of 48 h. Under these conditions, about 90% of the chemical oxygen demand as measured by the chromate method ($COD_{cr}$) was removed with a gas production yield of 0.4 l/g-COD removed. The redox potential of the acidogenic reactor was increased when the reactor was purged with nitrogen gas or agitation speed was increased. The increase in reduction potential was accompanied by an increase in acetate production and a decrease in butyrate formation. A similar trend was observed when a small amount of air was introduced into the acidogenic reactor. It is believed that the hydrogen partial pressure in the acidogenic reactor was decreased by the above mentioned treatments. The possible failure of anaerobic digestion processes due to over-loading could be avoided by the above mentioned treatments.

  • PDF

Microscope Examination of Attached Biofilm under Anaerobic Conditions (혐기성 조건에서 담체에 부착된 미생물의 관찰)

  • 박성열;김도한;나영수;박영식;송승구
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.100-105
    • /
    • 2001
  • Microstructural examinations were performed on the anaerobic biofilm from reactor filled with PE support media. Optical microscope, SEM and fluorescent microscope were used for qualitative and morphological studies on the attached microorganism under anaerobic condition. Microorganisms were attached in crevices where protection from shear forces of surfaces where easy to contact with support media surface. A hypothesis for biofilm accumulation occurs on a surface such as polymer support media is presented schematically : 1st step ; cell-support media attachment, 2nd step ; cell-support media attachment and cell-cell attachment, 3rd step ; attached biofilm from neighboring crevices joins together and growing, 4th step ; mature and irregualar biofilm was formed. In SEM photographs, shape and structures of biofilm were observed, but microorganism species and methanogens were not identified. A large number of methanogenic bacteria were identified on the surface of PE substratum by fluorescence under 480nm of radiation and it was estimated that methanogenic bacteria was related to initial attachment of bacteria under anaerobic condition.

  • PDF

A Study on the Use of an Immobilized-Cell Acidogenic Reactor for the High Rate Digestion of a Distillery Wastewater (유기산 생산 세균을 고정화학 2상 메탄발효조에 의한 주정 폐수의 고효율 소화)

  • 배재근;고종호;김병홍
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.407-414
    • /
    • 1994
  • Anaerobic fermentative bacteria were isolated from the acidogenic reactor of a labora- tory scale 2-stage anaerobic digestor. The isolate 1-6 was selected for its ablity to produce more fatty acids from distillery wastewater than others, and was identified as a strain of Clostridium. The isolate Clostridium sp. 1-6 is a thermophilic bacterium growing at 55$\circ$c , and grew best at pH 5.5. An acidogenic reactor using immobilized cells of the isolate Clostridium sp. 1-6 removed about 15% of COD from distillery wastwater as hydrogen, producing about 50 mM butyrate and about 10 mM acetate, when the reactor was operated at the hydraulic retention time(HRT) of 0.8 hr. It is proposed that this system can be used to convert the distillery wastewater to hydrogen and butyrate. More than 90% of COD was removed from the wastewater by anaerobic digestion using a 2-stage digestor consisting of a UASB methanogenic reactor and an acidogenic reactor of the immobilized cells of isolate Clostridium sp. 1-6.

  • PDF

Effect of High Concentration of Sulfate on Anaerobic Digestion of Propionic Acid Using an Upflow Anaerobic Sludge Blanket (상향류 혐기성 블랭킷 반응조를 이용한 프로피온산의 혐기성 처리시 고농도 황산염의 영향)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.75-82
    • /
    • 2008
  • Two UASB reactors were operated to investigate the effect of high concentration of sulfate on anaerobic digestion of propionate using an upflow anaerobic sludge blanket (UASB) reactor. An organic loading rate of $1.2kg\;COD/m^3{\cdot}d$ and a hydraulic retention time of 1.6 d were maintained during this study. In the absence of sulfate, the UASB reactor achieved about 95% removal of chemical oxygen demand whereas in the presence of $2,000\;SO_4^{2-}mg/L$, the COD removal rate decreased to 83% due probably to the inhibition of dissolved sulfide inhibition. Interactions between the methane producing bacteria (MPB) and sulfate reducing bacteria (SRB) were measured to investigate the competition between MPB and SRB. The MPB consumed average 58% of the available electron donors at $COD/SO_4^{2-}$ ratio of 1. Propionate was consumed mainly by SRB, converting sulfate into sulfide and suppressing the methane production. The specific methanogenic activity (SMA) using acetate and propionate increased as microorganism acclimated to the substrate.

  • PDF