• 제목/요약/키워드: methane monooxygenase

검색결과 20건 처리시간 0.025초

Electron Transfer to Hydroxylase through Component Interactions in Soluble Methane Monooxygenase

  • Lee, Chaemin;Hwang, Yunha;Kang, Hyun Goo;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권3호
    • /
    • pp.287-293
    • /
    • 2022
  • The hydroxylation of methane (CH4) is crucial to the field of environmental microbiology, owing to the heat capacity of methane, which is much higher than that of carbon dioxide (CO2). Soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily, is essential for the hydroxylation of specific substrates, including hydroxylase (MMOH), regulatory component (MMOB), and reductase (MMOR). The diiron active site positioned in the MMOH α-subunit is reduced through the interaction of MMOR in the catalytic cycle. The electron transfer pathway, however, is not yet fully understood due to the absence of complex structures with reductases. A type II methanotroph, Methylosinus sporium 5, successfully expressed sMMO and hydroxylase, which were purified for the study of the mechanisms. Studies on the MMOH-MMOB interaction have demonstrated that Tyr76 and Trp78 induce hydrophobic interactions through π-π stacking. Structural analysis and sequencing of the ferredoxin domain in MMOR (MMOR-Fd) suggested that Tyr93 and Tyr95 could be key residues for electron transfer. Mutational studies of these residues have shown that the concentrations of flavin adenine dinucleotide (FAD) and iron ions are changed. The measurements of dissociation constants (Kds) between hydroxylase and mutated reductases confirmed that the binding affinities were not significantly changed, although the specific enzyme activities were significantly reduced by MMOR-Y93A. This result shows that Tyr93 could be a crucial residue for the electron transfer route at the interface between hydroxylase and reductase.

메탄 바이오전환 기술의 현황과 전망 (Bioconversion of Methane: Current Technology and Prospect)

  • 황인엽;이은열
    • 공업화학전망
    • /
    • 제19권2호
    • /
    • pp.28-35
    • /
    • 2016
  • 천연가스, 셰일가스 및 바이오가스의 주성분인 메탄은 지구온난화 가스로, 감축대상인 동시에 차세대 탄소 자원으로 주목을 받고 있다. 기존의 화학적 메탄전환방법은 대규모 설비투자가 요구되는 규모의 경제가 적용되어 소규모 한계 가스전에는 활용이 어렵다. 이러한 문제점을 극복하기 위하여 최근에 생물학적 전환법이 대안으로 고려되고 있다. 메탄자화균은 메탄산화효소(methane monooxygenase)를 이용하여 상온 상압에서 메탄을 탄소원으로 사용하여 생장할 수 있다. 따라서 메탄자화균의 메탄 대사경로를 기반으로 대사공학을 활용하면 메탄으로부터의 다양한 종류의 고부가가치 산물 생산이 가능하다. 본고에서는 메탄자화균을 이용한 메탄의 바이오전환 기술의 현황 및 전망에 대하여 논의하였다.

Trichloroethylene(TCE)의 분해를 위한 메탄자화균총의 분리 및 배양 (Isolation and Cultivation of Methanotrophic Consortium for Trichloroethylene Degradation)

  • 이무열;신현재;염상필;양지원
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.483-490
    • /
    • 1998
  • Two unidentified methanotrophic strains (MM-white and MM-red) secreting soluble methane monooxygenase (sMMO) involved in thrichloroethylene biodegradation have been isolated from mixed methanotrophic consortium (MM) around Taejon area. Subsequently four methanotrophic strains were isolated from MM and named according to their color; white (MS-white), yellow (MS-yellow), pink (MS-pink) and reddish brown (MS-rbrown). All strains except MS-yellow which can take glucose as well as methane, metabolized methane as a sole carbon source. They all showed symbiotic behavior when methane was used as the sole carbon source. Optimum conditions of cell growth for MM were pH of 6.8 - 7.2, temperature of 29 - 32$^{\circ}C$, and gas flow rate of 6 (for methane), 40 (for air), and 4 ml/min (for carbon dioxide). The sMMO activity was expressed as naphthalene oxidation rate (${\mu}$mol/ mg protein/ hr). The sMMO activity for MM grown in flask culture with 1 ${\mu}$M of CuSO4 was 36, while it was 61 without copper. The activity for MM grown in the fermentor without CuSO4 was 1077, but is was 197 after reaction with 5 ppm of TCE. The methanotrophs showed significantly high sMMO activity despite the presence of 1 ${\mu}$M of CuSO4, although most of other strains already known could not express sMMO activity under this condition.

  • PDF

Methane Oxidation Potentials of Rice-associated Plant Growth Promoting Methylobacterium Species

  • Kang, Yeongyeong;Walitang, Denver I.;Seshadri, Sundaram;Shin, Wan-Sik;Sa, Tongmin
    • 한국환경농학회지
    • /
    • 제41권2호
    • /
    • pp.115-124
    • /
    • 2022
  • BACKGROUND: Methane is a major greenhouse gas attributed to global warming partly contributed by agricultural activities from ruminant fermentation and rice paddy fields. Methanotrophs are microorganisms that utilize methane. Their unique metabolic lifestyle is enabled by enzymes known as methane monooxygenases (MMOs) catalyzing the oxidation of methane to methanol. Rice absorbs, transports, and releases methane directly from soil water to its stems and the micropores and stomata of the plant epidermis. Methylobacterium species associated with rice are dependent on their host for metabolic substrates including methane. METHODS AND RESULTS: Methylobacterium spp. isolated from rice were evaluated for methane oxidation activities and screened for the presence of sMMO mmoC genes. Qualitatively, the soluble methane monooxygenase (sMMO) activities of the selected strains of Methylobacterium spp. were confirmed by the naphthalene oxidation assay. Quantitatively, the sMMO activity ranged from 41.3 to 159.4 nmol min-1 mg of protein-1. PCR-based amplification and sequencing confirmed the presence and identity of 314 bp size fragment of the mmoC gene showing over 97% similarity to the CBMB27 mmoC gene indicating that Methylobacterium strains belong to a similar group. CONCLUSION(S): Selected Methylobacterium spp. contained the sMMO mmoC gene and possessed methane oxidation activity. As the putative methane oxidizing strains were isolated from rice and have PGP properties, they could be used to simultaneously reduce paddy field methane emission and promote rice growth.

Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries

  • Hwang, In Yeub;Lee, Seung Hwan;Choi, Yoo Seong;Park, Si Jae;Na, Jeong Geol;Chang, In Seop;Kim, Choongik;Kim, Hyun Cheol;Kim, Yong Hwan;Lee, Jin Won;Lee, Eun Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권12호
    • /
    • pp.1597-1605
    • /
    • 2014
  • Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

Methane 자화성 세균 Methylosinus trichosporium OB3b에 의한 propene으로부터 propylene oxide의 생산 (Production of propylene oxide from propene by a methanotroph, Methylosinus trichosporium OB3b)

  • 정대석;백운화;방원기
    • Applied Biological Chemistry
    • /
    • 제34권4호
    • /
    • pp.386-392
    • /
    • 1991
  • Propene으로부터 propylene oxide를 생산하기 위하여, methane 자화성 세균인 Methylosinus trichosporium OB3b를 이용하였다. 이 균주는 methane을 methanol로 전환시키는 methane monooxygenase를 가지고 있는데, 이 효소는 또한 propene을 propylene oxide로 전환시킬 수 있다. 이 균주의 휴지세포를 이용하여 propene으로부터 propylene oxide 생산의 최적조건을 검토하였다. 최적 pH는 7.0이었으며, 최적온도는 $35^{\circ}C$이었다. 최종산물인 propylene oxide는 propylene oxide의 생산반응을 저해하지 않았으며, 더 이상 대사되지도 않았다. Methane 대사중간물질들(methanol, formaldehyde, formic acid)의 첨가는 propylene oxide의 생산을 $3{\sim}4$배 증가시켰으며, 특히 methanol 첨가의 경우에 가장 좋은 효과를 보였다. 상기의 최적조건하에서, 1시간 반응시 propylene oxide의 최대 생산량은 14.2 mM이었으며, 이 때 공급한 propene으로부터 propylene oxide로의 전환율은 약 8.0%이었다.

  • PDF

혼합 메탄자화균 생물막 반응기에 의한 Trichloroethylene 분해의 영향 인자 (Factors of Trichloroethylene Degradation by Methanotrophic Consortium Biofilm Reactor(MCBR))

  • 이무열;조현정;양지원
    • 대한환경공학회지
    • /
    • 제22권6호
    • /
    • pp.991-1000
    • /
    • 2000
  • 메탄올 주요 탄소원으로 사용하며 가용성 메탄산화효소 (soluble methane monooxygenase, sMMO)를 분비하는 혼합 메탄차화균을 celite R-635에 고정화시켜 TCE를 함유한 폐수를 연속적으로 처리하였다. 2 ppm의 TCE를 공급했을 때 각각 6. 20시간의 체류시간에서 약 80.4, 84.5%의 처리 효율을 얻었으며, 체류시간이 증가함에 따라서 제거율도 서서히 증가하였다. 5 ppm의 TCE를 공급하고 10시간 동안 체류시켰을 때, '초기에는 TCE의 제거능이 낮았으나 점차 81%까지 증가하였다. 또한 산소를 공급하면서 메탄을 주기적으로 공급할 때 5 ppm의 TCE가 체류시간 10. 15시간에서 각각 88.5, 96.5%까지 제거되었다. 반응기 내에 산소가 고갈된 상태에서 메탈을 고농도로 공급하면 MMO에 흡착된 메탄의 산화반응이 쉽게 진행되지 않아 TCE 분해능이 떨어졌다. 파일롯트 플랜트 규모의 생물막 반응기에서의 TCE 분해 실험 결과, 실제 크기 규모의 공장에도 충분히 적용 가능할 것으로 사료되었다.

  • PDF

메탄자화균 Methylosinus trichosporium OB3b의 성장 속도와 수율 : I. 실험적 고찰 (Growth Rate and Yield of a Methanotrophic Bacterium Methylosinus Trichosporium OB3b : I. Experimental Measurements)

  • 황재웅;송효학;박성훈
    • KSBB Journal
    • /
    • 제13권4호
    • /
    • pp.391-398
    • /
    • 1998
  • The effect of culture medium copper availability on the specific growth rate(${\mu}$) and carbon conversion efficiency (CCE) was sutided for an obligatory methanotroph Methylosinus trichosporium OB3b under various combinations of carbon and nitrogen sources. Methane or methanol was used as a carbon source, and nitrate or ammonium was used as a nitrogen source. Medium copper availability determined the intracellular location or kind of methane monooxygenase (MMO), cell-membrane (particulate or pMMO) when copper was present and cytoplasm (soluble or sMMO) when copper was deficient. When methane was used as a carbon source, copper-containing medium exhibited higher ${\mu}$ and CCE than copper-free medium regardless of the kind of nitrogen source. When methanol was used as a carbon source, however, the effect of copper disappeared. Ammonium gave the higher ${\mu}$ and CCE than nitrate for both methane and methanol. Those observation suggest that there exist an important difference in energy utilization efficiency for methane assimilation between sMMO and pMMO.

  • PDF

Trichloroethylene 분해를 위한 혼합 메탄자화균 생물막 반응기의 초기 조건 (Initial Condition of Methanotrophic Consortium Biofilm Reactor(MCBR) for Trichloroethylene Degradation)

  • 이무열;양지원
    • 대한환경공학회지
    • /
    • 제22권5호
    • /
    • pp.971-980
    • /
    • 2000
  • 가용성 메탄산화효소를 분비하는 혼합 메탄자화균총을 celite R-635에 고정화시켜 TCE 분해를 위한 새로운 형식의 가압 산기식 혼합 메탄자화균총 고정층 생물막 반응기를 설계하였다. Celite R-635에서 용출되는 용액의 pH는 약 4시간 후부터 안정화되어서 중성 영역에 도달하므로 더 이상 중화할 필요가 없었다. 혼합 메탄자화균 생물막을 완전히 형성하기 위해서는 130일이 걸렸으며, 처음에 흰색을 띠고 있었던 celite는 점차 붉게 변해 갔었다. 생물막이 형성된 후에는 메탄과 산소를 각각 2.5~4, 8~10 ppm씩 공급할 때 하루 동안 체류한 후 0.5~1, 1~2 ppm 정도로 농도가 낮아졌다. 초기에 2 ppm의 TCE를 메탄자화균 고정층 생물막 반응기에서 10시간 동안 체류시켰을 때 79.9%의 분해 효율을 보였다.

  • PDF