Browse > Article
http://dx.doi.org/10.4014/jmb.1407.07070

Biocatalytic Conversion of Methane to Methanol as a Key Step for Development of Methane-Based Biorefineries  

Hwang, In Yeub (Department of Chemical Engineering, Kyung Hee University)
Lee, Seung Hwan (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
Choi, Yoo Seong (Department of Chemical Engineering, Chungnam National University)
Park, Si Jae (Department of Environmental Engineering and Energy, Myongji University)
Na, Jeong Geol (Clean Fuel Department, Korea Institute of Energy Research)
Chang, In Seop (School of Environmental Science and Engineering, Gwangju Institute of Science and Technology)
Kim, Choongik (Department of Chemical and Biomolecular Engineering, Sogang University)
Kim, Hyun Cheol (Department of Chemical and Biomolecular Engineering, Sogang University)
Kim, Yong Hwan (Department of Chemical Engineering, Kwangwoon University)
Lee, Jin Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Eun Yeol (Department of Chemical Engineering, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.12, 2014 , pp. 1597-1605 More about this Journal
Abstract
Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.
Keywords
Methane; methane monooxygenase; methanotrophs; methanol; natural gas; shale gas;
Citations & Related Records
연도 인용수 순위
  • Reference
1 DiSpirito AA, Kunz RC, Choi DW, Zahn JA. 2004. Respiration in methanotrophs, pp. 149-168. In Zannoni D (eds.). Respiration in Archaea and Bacteria: Diversity of Procaryotic Respiratory Systems. Springer, Netherlands, Dordrecht.
2 Duan C, Luo M, Xing X. 2011. High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour. Technol. 102: 7349-7353.   DOI   ScienceOn
3 Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879-882.   DOI   ScienceOn
4 Friedle S, Reisner E, Lippard SJ. 2010. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 39: 2768-2779.   DOI   ScienceOn
5 Gesser HD, Hunter NR, Prakash CB. 1985. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85: 235-244.   DOI
6 Gunaseelan VN. 1997. Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg. 13: 83-114.   DOI   ScienceOn
7 Hakemian S, Rosenzweig AC. 2007. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76: 223-241.   DOI   ScienceOn
8 Hammond C, Forde MM, Rahim MHA, Thetford A, He Q, Jenkins RL, et al. 2012. Direct catalytic conversion of methane to methanol in an aqueous medium by using Copper-Promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51: 5129-5133.   DOI   ScienceOn
9 Holmes AJ, Costello A, Lidstrom ME, Murrell JC. 1995. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 203-208.   DOI   ScienceOn
10 Olah GA. 2005. Beyond oil and gas: the methanol economy. Angew. Chem. 44: 2636-2639.   DOI   ScienceOn
11 Park D, Lee J. 2013. Biological conversion of methane to methanol. Kor. J. Chem. Eng. 30: 977-987.   DOI   ScienceOn
12 Pellegrini LA, Soave G, Gamba S, Lange S. 2011. Economic analysis of a combined energy-methanol production plant. Appl. Energ. 88: 4891-4897.   DOI   ScienceOn
13 Periana RA, Taube DJ, Evitt ER, Loffler DG, Wentrcek PR, Voss G, Masuda T. 1993. A mercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259: 340-343.   DOI   ScienceOn
14 Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Camp HJMOD. 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450: 874-878.   DOI   ScienceOn
15 Prior SD, Dalton H. 1985. The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J. Gen. Microbiol. 131: 155-163.
16 Pulver S, Froland WA, Fox BG, Lipscomb JD, Solomon EI. 1993. Spectroscopic studies of the coupled binuclear non-heme iron active site in the fully reduced hydroxylase component of methane monooxygenase: comparison to deoxy and deoxy-azide hemerythrin. J. Am. Chem. Soc. 115: 12409-12422.   DOI   ScienceOn
17 Reinhold VN. 1992. Methane conversion by oxidative processes. In Wolf EE (ed.). Fundamental and Engineering Aspects. Van Nostrand Reinhold, New York.
18 Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. 2011. Autotrophic methanotrophy in Verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J. Bacteriol. 193: 4438-4446.   DOI   ScienceOn
19 Hwang JW, Choi YB, Park S, Choi CY, Lee EY. 2007. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b. Biodegradation 18: 91-101.
20 Hyman MR, Murton IB, Arp DJ. 1988. Interaction of ammonia monooxygenase from Nitrosomonas europaea with alkanes, alkenes, and alkynes. Appl. Environ. Microbiol. 54: 3187-3190.
21 Kim HG, Han GH, Kim SW. 2010. Optimization of lab scale methanol production by Methylosinus trichosporium OB3b. Biotechnol. Bioprocess Eng. 15: 476-480.   DOI   ScienceOn
22 Kim HG, Kim SW. 2006. Purification and characterization of a methanol dehydrogenase derived from Methylomicrobium sp. HG-1 cultivated using a compulsory circulation diffusion system. Biotechnol. Bioprocess Eng. 11: 134-139.   DOI   ScienceOn
23 Kuuskraa VA, Stevens SH, Moodhe KD. 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, pp. 1-730. US Department of Energy, Washington, DC.
24 Lee EY, Ye BD, Park SH. 2003. Development and operation of a trickling biofilter system for continuous treatment of gas-phase trichloroethylene. Biotechnol. Lett. 25: 1757-1761.   DOI   ScienceOn
25 Lee SG, Goo JH, Kim HG, Oh JI, Kim YM, Kim SW. 2004. Optimization of methanol biosynthesis from methane using Methylosinus trichosporium OB3b. Biotechnol. Lett. 26: 947-950.   DOI   ScienceOn
26 Benlounes O, Mansouri S, Rabia C, Hocine S. 2008. Direct oxidation of methane to oxygenates over heteropolyanions. J. Nat. Gas Chem. 17: 309-312.   DOI   ScienceOn
27 Anthony C. 2004. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 428: 2-9.   DOI   ScienceOn
28 Alvarez-Galvan MC, Mota N, Ojeda M, Rojas S, Navarro RM, Fierro JLG. 2011. Direct methane conversion routes to chemicals and fuels. Catal. Today 171: 15-23.   DOI   ScienceOn
29 Arp DJ, Sayavedra-Soto LA, Hommes NG. 2002. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Arch. Microbiol. 178: 250-255.   DOI
30 Bollinger Jr JM. 2010. Getting the metal right. Nature 465: 40-41.   DOI   ScienceOn
31 Chistoserdova L, Lidstrom ME. 2013. Aerobic methylotrophic prokaryotes, pp. 267-285. In DeLong EF, Lory S, Stackebrandt E, Thompson F, Rosenberg E (eds.). The Prokaryotes. Springer, Berlin-Heidelberg.
32 Conrado RJ, Gonzalez R. 2014. Envisioning the bioconversion of methane to liquid fuels. Science 343: 621-623.   DOI   ScienceOn
33 Culpepper MA, Rosenzweig AC. 2012. Architecture and active site of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 47: 483-492.   DOI   ScienceOn
34 Marilyn R. 2011. Worldwide look at reserves and production. Oil Gas J. 109: 26-29.
35 Lee SJ, McCormick MS, Lippard SJ, Cho US. 2013. Control of substrate access to the active site in methane monooxygenase. Nature 494: 380-384.   DOI   ScienceOn
36 Lipscomb JD. 1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48: 371-399.   DOI   ScienceOn
37 Li T, Wang SJ, Yu CS, Ma YC, Li KL, Lin LW. 2011. Direct conversion of methane to methanol over nano-[Au/$SiO_2$] in [Bmim]Cl ionic liquid. Appl. Catal. A Gen. 398: 150-154.   DOI   ScienceOn
38 Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. 2013. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front. Microbiol. 4: 1-16.
39 Muehlhofer M, Strassner T, Herrmann WA. 2002. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. 41: 1745-1747.   DOI   ScienceOn
40 Murrell JC, McDonald IR, Gilbert B. 2000. Regulation of expression of methane monooxygenases by copper ions. Trends Microbiol. 8: 221-225.   DOI   ScienceOn
41 Murrell JC, Smith TJ. 2010. Biochemistry and molecular biology of methane monooxygenase, pp. 1046-1055. In Timmis KN (ed.). Handbook of Hydrocarbon and Lipid Microbiology (eds.). Springer-Verlag.
42 Nielsen AK, Gerdes K, Degn H, Murrel JC. 1996. Regulation of bacterial methane oxidation: transcription of the soluble methane mono-oxygenase operon of Methylococcus capsulatus (Bath) is repressed by copper ions. Soc. Gen. Microbiol. 142: 1289-1296.
43 Shindell D, Kuylenstierna JCI, Vignati E, Dingenen RV, Amann M, Klimont Z, et al. 2012. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335: 183-189.   DOI   ScienceOn
44 Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA. 1997. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions. Protein Struct. Funct. Genet. 29: 141-152.   DOI   ScienceOn
45 Semrau JD, DiSpirito AA, Yoon S. 2010. Methanotrophs and copper. FEMS Microbiol. Rev. 34: 496-531.   DOI
46 Shilov AE, Shul'pin GB. 1997. Activation of CH bonds by metal complexes. Chem. Rev. 97: 2879-2932.   DOI   ScienceOn
47 Stirling DI, Dalton H. 1978. Purification and properties of an NAD $(P)^{+}$-linked formaldehyde dehydrogenase from Methylococcus capsulatus (Bath). J. Gen. Appl. Microbiol. 107: 19-29.   DOI
48 Taher E, Chandran K. 2013. High-rate, high-yield production of methanol by ammonia-oxidizing bacteria. Environ. Sci. Technol. 47: 3167-3173.   DOI
49 Takeguchi M, Furuto T, Sugimori D, Okura I. 1997. Optimization of methanol biosynthesis by Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Appl. Biochem. Biotechnol. 68: 143-152.   DOI   ScienceOn
50 Takeguchi M, Okura I. 2000. Role of iron and copper in particulate methane monooxygenase of Methylosinus trichosporium OB3b. Catal. Surv. Jap. 4: 51-63.   DOI
51 Trotsenko YA, Murrell JC. 2008. Metabolic aspects of aerobic obligate methanotrophy. Adv. Appl. Microbiol. 63: 183-229.   DOI   ScienceOn
52 Xin JY, Cui JR, Hu XX, Li SB, Xia CG, Zhu LM, Wang YQ. 2002. Particulate methane monooxygenase from Methylosinus trichosporium is a copper-containing enzyme. Biochem. Biophys. Res. Commun. 295: 182-186.   DOI   ScienceOn
53 Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, et al. 2004. Genomic insights into methanotrophy: the complete genome sequence of Methylococcus capsulatus (Bath). Plos Biol. 2: 1616-1628.
54 Wood DA, Nwaoha C, Towler BF. 2012. Gas-to-liquids (GTL): a review of an industry offering several routes for monetizing natural gas. J. Nat. Gas Sci. Eng. 9: 196-208.   DOI   ScienceOn
55 Xin JY, Cui JR, Niu JZ, Hua SF, Xia CG, Li SB, Zhu LM. 2004. Production of methanol from methane by methanotrophic bacteria. Biocatal. Biotransform. 22: 225-229.   DOI   ScienceOn
56 Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA. 2001. Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J. Bacteriol. 183: 6832-6840.   DOI   ScienceOn
57 Lieberman RL, Rosenzweig AC. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. Biol. 39: 147-164.   DOI   ScienceOn
58 Balasubramanian R, Rosenzweig AC. 2007. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc. Chem. Res. 40: 573-580.   DOI   ScienceOn
59 Furuto T, Takeguchi M, Okura I. 1999. Semicontinuous methanol biosynthesis by Methylosinus trichosporium OB3b. J. Mol. Catal. A Chem. 144: 257-261.   DOI   ScienceOn
60 Kang J, Lee EY, Park S. 2001. Co-metabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations of methane or methanol. Biotechnol. Lett. 23: 1877-1882.   DOI   ScienceOn
61 Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA. 2008. Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 27: 107-115.
62 Yoshizawa K, Shiota Y. 2006. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study. J. Am. Chem. Soc. 128: 9873-9881.   DOI   ScienceOn