Journal of Advanced Marine Engineering and Technology
/
v.38
no.9
/
pp.1045-1050
/
2014
$N_2O$(Nitrous Oxide) is known as the third major GHG(Green House Gas) following $CO_2$(Carbon Oxide) and $CH_4$(Methane). The GWP(Global Warming Potential) factor of $N_2O$ is 310 times as large as that of $CO_2$ because $N_2O$ in the atmosphere is very stable, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. Investigation on the cause of the $N_2O$ formation have been continuously reported by several researchers on power sources with continuous combustion form, such as a boiler. However, in the diesel engine, research on $N_2O$ generation which has effected from fuel components has not been conducted. Therefore, in this research, author has investigated about $N_2O$ emission rates which was changed by nitrogen and sulfur concentration in fuel on the diesel engine. The test engine was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition of that was set up at a 75% load. Nitrogen and sulfur concentrations in fuel were raised by using six additives : nitrogen additives were Pyridine, Indole, Quinoline, Pyrrol and Propionitrile and sulfur additive was Di-tert-butyl-disulfide. In conclusion, diesel fuels containing nitrogen elements less than 0.5% did not affect $N_2O$ emissions in the all concentrations and kinds of the additive agent in the fuel. However, increasing of the sulfur additive in fuel increased $N_2O$ emission in exhaust gas.
Park Seung-Shik;Hong Sang-Bum;Lee Jai-Hoon;Cho Sung-Yong;Kim Seung-Jai
Journal of Korean Society for Atmospheric Environment
/
v.22
no.2
/
pp.259-266
/
2006
A dual-channel glass coil sampling technique was used to measure hourly formaldehyde concentration in the ambient air. The dual-channel coil sampling assembly consists of three parts; an all-pyrex 28-turn coil made of 0.2-cm internal diameter glass tubing for gas-liquid contact and scrubbing of soluble gases, an inlet section upstream of the coil for introducing sample air and scrubbing solution, and a widened glass section downstream of the coil for gas-liquid separation. The scrubbing solution used was a dilute aqueous DNPH (dinitrophenylhydrazine) solution. Hourly concentration of formaldehyde was determined at a Gwangju semi-urban site during two intensive studies between September and October using the dual channel glass-coil/DNPH sampling technique and HPLC (High Performance Liquid Chromatography) analysis. The mean concentration was 1.7($0.4{\sim}4.7$) and 3.0($0.5{\sim}19.1$) ppbv for the September and October intensives, respectively, which are considerably low, compared to those measured in polluted urban areas around the world including several urban areas of Korea. The diurnal variation showed significant increase of formaldehyde in the daytime suggesting the dominance of formation of formaldehyde due to photochemical oxidation of methane and other hydrocarbons. An increase in the formaldehyde sometimes in the night might be due to an increase in primary source, i.e. traffic emissions. It was also found that rapid increase in formaldehyde levels from 3.0 to 19.1 ppbv in the afternoon on October 20 was due to plumes from burning of agricultural wastes such as rice straw and stubble. It is expected from the measurement data that the constructed dual-channel glass coil sampling system can be utilized for measuring atmospheric concentration of the formaldehyde with high time resolution.
Air pollution trends in Japan between 1970 and 2012 were analyzed, and the impact of air pollution countermeasures was evaluated. Concentrations of CO decreased from 1970 to 2012, and in 2012, the Japanese environmental quality standard (EQS) for CO was satisfied. Concentrations of $SO_2$ dropped markedly in the 1970s, owing to use of desulfurization technologies and low-sulfur heavy oil. Major reductions in the sulfur content of diesel fuel in the 1990s resulted in further decreases of $SO_2$ levels. In 2012, the EQS for $SO_2$ was satisfied at most air quality monitoring stations. Concentrations of $NO_2$ decreased from 1970 to 1985, but increased from 1985 to 1995. After 1995, $NO_2$ concentrations decreased, especially after 2006. In 2012, the EQS for $NO_2$ was satisfied at most air quality monitoring stations, except those alongside roads. The annual mean for the daily maximum concentrations of photochemical oxidants (OX) increased from 1980 to 2010, but after 2006, the $98^{th}$ percentile values of the OX concentrations decreased. In 2012, the EQS for OX was not satisfied at most air quality monitoring stations. Non-methane hydrocarbon (NMHC) concentrations generally decreased from 1976 to 2012. In 2011, NMHC concentrations near roads and in the general environment were nearly the same. The concentration of suspended particulate matter (SPM) generally decreased. In 2011, the EQS for SPM was satisfied at 69.2% of ambient air monitoring stations, and 72.9% of roadside air-monitoring stations. Impacts from mineral dust from continental Asia were especially pronounced in the western part of Japan in spring, and year-round variation was large. The concentration of $PM_{2.5}$ generally decreased, but the EQS for $PM_{2.5}$ is still not satisfied. The air pollution trends were closely synchronized with promulgation of regulations designed to limit pollutant emissions. Trans-boundary OX and $PM_{2.5}$ has become a big issue which contains global warming chemical species such as ozone and black carbon (so called SLCP: Short Lived Climate Pollutants). Cobeneficial reduction approach for these pollutants will be important to improve both in regional and global atmospheric environmental conditions.
Korean Journal of Agricultural and Forest Meteorology
/
v.18
no.4
/
pp.337-347
/
2016
Carbon dioxide ($CO_2$) and methane ($CH_4$) were measured in a rice-barley double cropping and rice mono cropping paddy fields, which are located in the southwestern coast of Korea, over a one-year period. Net ecosystems $CO_2$ exchange (NEE) and ecosystem respiration (Re) were estimated by the eddy covariance (EC) method, and an automatic open/close chamber (AOCC) method was used to measure $CH_4$ fluxes. Environmental factors (solar radiation, air temperature, precipitation etc.) were also measured along with fluxes. After the quality control and gap-filling, the observed fluxes were analyzed. As a result, NEE was -603.0 and $-471.5g\;C\;m^{-2}\;yr^{-1}$ in rice-barley double cropping and rice mono cropping paddy field, respectively. $CH_4$ emissions increased during the course of flooded days and were similar in two cropping paddy field. Accoding to rough results considering only fluxes of $CO_2$ and $CH_4$, it was estimated that the carbon absorbation in rice-barley double cropping paddy field was higher than that in rice mono cropping paddy field by $128.9g\;C\;m^{-2}\;yr^{-1}$.
Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are often used as fuel for vehicles because they are clean alternative gas fuels. CNG, as a low-carbon fuel, can contribute to the reduction of greenhouse gas emissions. LPG is often used as fuel for taxis because the performance is almost the same as that of gasoline but the price is lower. In the present study, the exhaust gas and the particle number (PN) of particulate matter, which is a recent environmental issue, were compared between LPG and CNG for the same vehicle. A chassis dynamometer was used to conduct the test according to the Federal Test Procedure (FTP)-75 and Worldwide harmonized Light-duty vehicle Test Procedure (WLTC) modes. The PN values of discharged particles having sizes of 5 nm or larger and 23 nm or larger were measured using two condensation particle counters (CPC). The ratio of carbon dioxide was high in the exhaust gas from the LPG vehicle; the ratio of methane was high in the exhaust gas from the CNG vehicle. The PN values of the emitted particles from the two fuels were similar. The PN values of particles having sizes of 23 nm or smaller were high in the high-speed WLTC mode.
Lee, Soojung;Kim, Seoyoung;Kim, Ye Ji;Lee, Yun-Yeong;Cho, Kyung-Suk
Microbiology and Biotechnology Letters
/
v.49
no.2
/
pp.225-238
/
2021
CH4-oxidizing and N2O-reducing bacterial consortia were enriched from the rhizosphere soils of maize (Zea mays) and tall fescue (Festuca arundinacea). Illumina MiSeq sequencing analysis was performed to comparatively analyze the bacterial communities of the consortia with those of the rhizosphere soils. Additionally, the effect of root exudate on CH4 oxidation and N2O reduction activities of the microbes was evaluated. Although the inoculum sources varied, the CH4-oxidizing and N2O-reducing consortia derived from maize and tall fescue were similar. The predominant methanotrophs in the CH4-oxidizing consortia were Methylosarcina, Methylococcus, and Methylocystis. Among the N2O-reducing consortia, the representative N2O-reducing bacteria were Cloacibacterium, Azonexus, and Klebsiella. The N2O reduction rate of the N2O-reducing consortium from maize rhizosphere and tall fescue rhizosphere increased by 1.6 and 2.7 times with the addition of maize and tall fescue root exudates, respectively. The CH4 oxidization activity of the CH4-oxidizing consortia did not increase with the addition of root exudates. The CH4-oxidizing and N2O-reducing consortia can be used as promising bioresources to mitigate non-CO2 greenhouse gas emissions during remediation of oil-contaminated soils.
The closed chamber method, which is one of the most commonly used method for measuring greenhouse gases produced in rice paddy fields, has limitations in measuring dynamic $CH_4$ flux with spatio-temporal constrains. In order to deal with the limitation of the closed chamber method, some studies based on open-path of eddy covariance method have been actively conducted recently. The aim of this study was to compare the $CH_4$ fluxes measured by open-path and closed chamber method in the paddy rice fields. The open-path, one of the gas ($CO_2$, $CH_4$ etc.) analysis methods, is technology where a laser beam is emitted from the source passes through the open cell, reflecting multiple times from the two mirrors, and then detecting. The $CH_4$ emission patterns by these two methods during rice cultivation season were similar, but the total $CH_4$ emission measured by open-path method were 31% less than of the amount measured by closed chamber. The reason for the difference in $CH_4$ emission was due to overestimation by closed chamber and underestimation by open-path. The closed chamber method can overestimate $CH_4$ emissions due to environmental changes caused by high temperature and light interruption by acrylic partition in chamber. On the other hand, the open-path method for eddy covariance can underestimate its emission because it assumes density fluctuations and horizontal homogeneous terrain negligible However, comparing $CH_4$ fluxes at the same sampling time (AM 10:30-11:00, 30-min fluxes) showed good agreements ($r^2=0.9064$). The open-path measurement technique is expected to be a good way to compensate for the disadvantage of the closed chamber method because it can monitor dynamic $CH_4$ fluctuation even if data loss is taken into account.
Korean Journal of Agricultural and Forest Meteorology
/
v.23
no.3
/
pp.141-148
/
2021
Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.
In this study, we analyzed the long-term distribution patterns of $CH_4$ determined from the Moo-Ahn (MAN) observatory in relation with those derived from the world major background monitoring sites. Comparison of the data were made using those data sets collected for the period between Aug. 1995 to Dec. 1991. The mean $CH_4$ concentration of MAN observatory was measured to be 1898${\pm}$85.3 ppb, recording the highest concentration of all the monitoring sites. When the concentration of $CH_4$ for different stations was compared over latitudinal scale, its concentration appeared to increase systematically as a function of latitude with an exception of MAN (and the other Korean monitoring site at Tae Ahn). Moreover, such phenomenon was more distinctive in Northern than Southern Hemisphere. According to the analysis of the monthly distribution patterns of $CH_4$ at MAN observatory, its concentration level began to increase from the months of February/March and peaked during August. In addition, when the level of oscillation in monthly concentrations (between the maximum and minimum values) was checked, differences were significant between MAN and other monitoring stations. If the rate of concentration change was checked using the data sets collected for this limited time period in terms of linear regression analysis, results for MAN showed the highest annual increasing rate of 16.5 ppb. It is hence suggested that the largest variability in the $CH_4$ distribution patterns at MAN observatory may be reflected by the high irregularity in its source/sink processes.
This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.