• Title/Summary/Keyword: methane emissions

Search Result 272, Processing Time 0.023 seconds

A Study on the Environmental Characteristic Analysis at Closed Small Sale Landfill Site (소규모 사용종료매립지의 환경특성분석)

  • Jang, Seong-Ho;Cho, Han-Jin;Lee, Chun-Sik
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.901-905
    • /
    • 2010
  • Emissions of leachate, odor, and landfill gas(LFG) from an open-dumping landfill site do harm to public health by contaminating neighboring soil, underground water, and rivers. Particularly, methane($CH_4$) and carbon dioxide($CO_2$), the main components of LFG, are especially noted as the causing material of the global warming that become seriously recognized worldwide issue. As one of alternatives in managing LFG, incineration of inflammable wastes that are generated during excavation process at an open-dumping landfill has been evaluated. Standard on stabilization for evaluation, neither $CH_4$ density nor $CO_2$ density could not Because meet 'less than 5%' criterion and so it is right to install a gas collection system during landfill renewal to prevent diffusion of odor and collect it. Because it shows considerable heating value, incineration of inflammable wastes might be the reasonable solution from the result of our study.

Advanced flame quality indicator for emission control (저공해 연소를 위한 화염진단장치의 특성)

  • Kim, Jong-Won;Lee, Sang-Ho;Park, Kee-Bae;Sim, Kyu-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.43-50
    • /
    • 1996
  • It is very important to improve the combustion efficiency and reduce pollutant emission in order to save energy and environment. Especially, thermal NOx has been reduced through monitoring burner flame, because the thermal NOx is strongly related to flame characteristics. In this work, a flame-monitoring system was fabricated with photodiode, optical fiber, interference filter and data acquisition system, and it was applied to a lab-scale methane combustion system and a testing facility. Flame intensity and mean frequency increased with increasing turbulent intensity and fuel loading. The sensor signal from flame fluctuations differed from that without flame, which showed the availability af the flame scanner to find the presence of flame. NOx emissions increased with flame intensity.

  • PDF

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

Preliminary Thermodynamic Evaluation of a Very High Temperature Reactor (VHTR) Integrated Blue Hydrogen Production Process (초고온가스로 연계 블루수소 생산 공정의 열역학적 분석)

  • SEONGMIN SON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.3
    • /
    • pp.267-273
    • /
    • 2023
  • As the impacts of global climate change become increasingly apparent, the reduction of carbon emissions has emerged as a critical subject of discussion. Nuclear power has garnered attention as a potential carbon-free energy source; however, the rapidity of load following in nuclear power generation poses challenges in comparison to fossil-fueled methods. Consequently, power-to-gas systems, which integrate nuclear power and hydrogen, have attracted growing interest. This study presents a preliminary design of a very high temperature reactor (VHTR) integrated blue hydrogen production process utilizing DWSIM, an open-source process simulator. The blue hydrogen production process is estimated to supply the necessary calorific value for carbon capture through tail gas combustion heat. Moreover, a thermodynamic assessment of the main recuperator is performed as a function of the helium flow rate from the VHTR system to the blue hydrogen production system.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Estimate and Environmental Assessment of Greenhouse Gas(GHG) Emissions and Sludge Emissions in Wastewater Treatment Processes for Climate Change (기후변화를 고려한 하수처리공법별 온실가스 및 슬러지 배출량 산정 및 환경성 평가)

  • Oh, Tae-Seok;Kim, Min-Jeong;Lim, Jung-Jin;Kim, Yong-Su;Yoo, Chang-Kyoo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • In compliance with an international law about the ocean dumping of the sludge, the proper sewage treatment process which occurs from the wastewater treatment process has been becoming problem. Generally the sewage and the sludge are controlled from anaerobic condition when the sewage is treated and land filled, where the methane$(CH_{4})$ and the nitrous oxide $(N_{2}O)$ from this process are discharged. Because these gases have been known as one of the responsible gases for global warming, the wastewater treatment process is become known as emission sources of green house gases(GHG). This study is to suggest a new approach of estimate and environmental assessment of greenhouse gas emissions and sludge emissions from wastewater treatment processes. It was carried out by calculating the total amounts of GHG emitted from biological wastewater treatment process and the amount of the sludgegenerated from the processes. Four major biological wastewater treatment processes which are Anaerobic/Anoxic/Oxidation$(A_{2}O)$, Bardenpho, Virginia Initiative Plant(VIP), University of Cape Town(UCT)are used and GPS-X software is used to model four processes. Based on the modeling result of four processes, the amounts of GHG emissions and the sludge produced from each process are calculated by Intergovernmental Panel on Climate Change(IPCC) 2006 guideline report. GHG emissions for water as well as sludge treatment processes are calculated for environmental assessment has been done on the scenario of various sludge treatments, such as composting, incineration and reclamation and each scenario is compared by using a unified index of the economic and environmental assessment. It was found that Bardenpho process among these processes shows a best process that can emit minimum amount of GHG with lowest impact on environment and composting emits the minimum amount of GHG for sludge treatment.

New Estimates of CH4 Emission Scaling Factors by Amount of Rice Straw Applied from Korea Paddy Fields (볏짚 시용에 따른 벼 재배 논에서의 메탄 배출계수 개발에 관한 연구)

  • Ju, Okjung;Won, Tae-Jin;Cho, Kwang-Rae;Choi, Byoung-Rourl;Seo, Jae-Sun;Park, In-Tae;Kim, Gun-Yeob
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • BACKGROUND: Accurate estimates of total direct $CH_4$ emissions from croplands on a country scale are important for global budgets of anthropogenic sources of $CH_4$ emissions and for the development of effective mitigation strategies. Methane production resulted by the anaerobic decomposition of organic compounds where $CO_2$ acts as inorganic electron acceptor. This process could be affected by the addition of rice straw, water management and rice variety itself. METHODS AND RESULTS: Rice (Oryza sativa L. Japonica type, var Samkwangbyeo) was cultivated in four plots: (1) Nitrogen-Phosphorus-Potassium (NPK) ($N-P_2O_5-K_2O$:90-45-57 kg/ha); (2) NPK plus 3 Mg/ha rice straw (RS3); (3) NPK plus 5 Mg/ha rice straw (RS5); (4) NPK plus 7 Mg/ha rice straw (RS7) for 3 years (2010-2012) and the rice straw incorporated in fall (Nov.) in Gyeonggi-do Hwaseong-si. Gas samples were collected using the closed static chamber which were installed in each treated plot of $152.9m^2$. According to application of 3, 5, 7 Mg/ha of rice straw, methane emission increased by 46, 101, 190%, respectively, compared to that of the NPK plot. CONCLUSION(S): We obtained a quantitative relationship between $CH_4$ emission and the amount of rice straw applied from rice fields which could be described by polynomial regression of order 2. The emission scaling factor estimated by the relationship were in the range of IPCC GPG (2000).

Observation of Methane Flux in Rice Paddies Using a Portable Gas Analyzer and an Automatic Opening/Closing Chamber (휴대용 기체분석기와 자동 개폐 챔버를 활용한 벼논에서의 메탄 플럭스 관측)

  • Sung-Won Choi;Minseok Kang;Jongho Kim;Seungwon Sohn;Sungsik Cho;Juhan Park
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.436-445
    • /
    • 2023
  • Methane (CH4) emissions from rice paddies are mainly observed using the closed chamber method or the eddy covariance method. In this study, a new observation technique combining a portable gas analyzer (Model LI-7810, LI-COR, Inc., USA) and an automatic opening/closing chamber (Model Smart Chamber, LI-COR, Inc., USA) was introduced based on the strengths and weaknesses of the existing measurement methods. A cylindrical collar was manufactured according to the maximum growth height of rice and used as an auxiliary measurement tool. All types of measured data can be monitored in real time, and CH4 flux is also calculated simultaneously during the measurement. After the measurement is completed, all the related data can be checked using the software called 'SoilFluxPro'. The biggest advantage of the new observation technique is that time-series changes in greenhouse gas concentrations can be immediately confirmed in the field. It can also be applied to small areas with various treatment conditions, and it is simpler to use and requires less effort for installation and maintenance than the eddy covariance system. However, there are also disadvantages in that the observation system is still expensive, requires specialized knowledge to operate, and requires a lot of manpower to install multiple collars in various observation areas and travel around them to take measurements. It is expected that the new observation technique can make a significant contribution to understanding the CH4 emission pathways from rice paddies and quantifying the emissions from those pathways.

Evaluation of Greenhouse Gas Emissions in Cropland Sector on Local Government Levels based on 2006 IPCC Guideline (2006 IPCC 가이드라인을 적용한 지자체별 경종부문 온실가스 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Seul-Bi;Lee, Jong-Sik;Lee, Jung-Hwan;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.842-847
    • /
    • 2012
  • This study was conducted to estimate the greenhouse gas emissions on local government levels from 1990 to 2010 using 2006 IPCC guideline methodology. To calculate greenhouse gas emissions based on the 16 local governments, emission factor and scaling factor were used with default value and activity data came from the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry, and Fisheries). The total emissions in crop sector gradually decreased from 1990 to 2010 due to a decline in agricultural land and nitrogen fertilizer usage. The annual average emission of greenhouse gas was the highest in Jeonnam (JN) with 1,698 Gg $CO_2$-eq and following Chungnam (CN), Gyungbuk (GB), Jeonbuk (JB) and Gyunggi (GG). The sum of top-six locals emission had occupied 83.4% of the total emission in cropland sector. The annual average emissions in 1990 by applying 2006 IPCC guideline were approximately 43% less than the national greenhouse gas inventory by 1996 IPCC guideline. Jeonnam (JN) province occupied also the highest results of greenhouse gas emission estimated by gas types (methane, nitrous oxide and carbon dioxide) and emission sources such as rice cultivation, agricultural soil, field burning of crop residue and urea fertilizer.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.