• Title/Summary/Keyword: methane

Search Result 2,679, Processing Time 0.027 seconds

Allelic Distribution of OsPRR37, a Major Heading Date Gene in Korean Rice Cultivars

  • Hayeong Lee;Yurim Kim;Jiheon Han;Sieun Choi;Yeeun Jun;Hosun Chun;Soonhwa Kwak;Youngjun Mo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.225-225
    • /
    • 2022
  • Rice is a major food crop consumed by approximately half of the world's population. Heading date is one of the major agronomic traits and has a wide impact on the productivity and quality of rice. Recently, shortening the growth period of rice through modulating heading date has been emphasized as one of the most effective strategies for reducing methane emissions from paddy fields. OsPRR37, a major heading date gene in rice, represses flowering under both short-day and long-day conditions. Plants carrying the loss-of-function alleles of OsPRR37 have been reported to flower approximately seven days and 20 days earlier than those carrying the functional alleles in short day and long day conditions, respectively. In this study, we investigated the nucleotide sequence variation existing in the exonic regions of OsPRR37 and catalogued the allelic distribution in 208 Korean rice cultivars. We used four sets of primers for amplifying and sequencing the eight exons of OsPRR37. As a result, two types of loss-of-function alleles and four types of functional alleles were found in 208 Korean rice cultivars. Interestingly, only three cultivars (Jinbuolbyeo, Jinseolchal, and Mimyeon) carried loss-of-function alleles while 205 carried functional alleles, indicating that OsPRR37 loss-of-function alleles have been used very rarely in Korean rice breeding programs. To generate useful information for the development of early-maturing rice cultivars, our future work will focus on analyzing the effect of different OsPRR37 alleles on heading date and other major agronomic traits.

  • PDF

Advancing Towards a Sustainable Future: Recent Trends in Catalytic Upcycling of Waste Plastics (지속가능한 미래를 위한 폐플라스틱의 촉매 업사이클링 연구 동향)

  • Taeeun Kwon;Insoo Ro
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.505-516
    • /
    • 2023
  • Plastic's ease of processing drives its growing production, resulting in a surge of plastic waste. Addressing this issue, catalytic upcycling emerges as a promising remedy. Various metals (Ru, Pt, etc.) and supports (TiO2, CeO2, etc.) have been employed for the chemical recycling of polyolefin plastics. Strategies to enhance liquid fuel selectivity and minimize methane include manipulating particle size, introducing heterogeneous metals, and tuning support characteristics. Simultaneously, endeavors to optimize catalysts by reducing precious metal usage were pursued. This study explores enhancing economic viability in hydrogenolysis and hydrocracking reactions, underscoring the potential of catalystdriven upcycling to tackle plastic waste.

Measurements of the Adhesion Energy of CVD-grown Monolayer Graphene on Dielectric Substrates (단일층 CVD 그래핀과 유전체 사이의 접착에너지 측정)

  • Bong Hyun Seo;Yonas Tsegaye Megra;Ji Won Suk
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.377-382
    • /
    • 2023
  • To enhance the performance of graphene-based devices, it is of great importance to better understand the interfacial interaction of graphene with its underlying substrates. In this study, the adhesion energy of monolayer graphene placed on dielectric substrates was characterized using mode I fracture tests. Large-area monolayer graphene was synthesized on copper foil using chemical vapor deposition (CVD) with methane and hydrogen. The synthesized graphene was placed on target dielectric substrates using polymer-assisted wet transfer technique. The monolayer graphene placed on a substrate was mechanically delaminated from the dielectric substrate by mode I fracture tests using double cantilever beam configuration. The obtained force-displacement curves were analyzed to estimate the adhesion energies, showing 1.13 ± 0.12 J/m2 for silicon dioxide and 2.90 ± 0.08 J/m2 for silicon nitride. This work provides the quantitative measurement of the interfacial interactions of CVD-grown graphene with dielectric substrates.

Effects of Additives on Greenhouse Gas Emission during Organic Waste Composting: A Review and Data Analysis (첨가제가 유기성 폐기물 퇴비화 과정 중 온실가스 발생에 미치는 영향: 리뷰 및 데이터 분석)

  • Seok-Soon Jeong;Byung-Jun Park;Jung-Hwan Yoon;Sang-Phil Lee;Jae-E. Yang;Hyuck-Soo Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.358-370
    • /
    • 2023
  • Composting has been proposed for the management of organic waste, and the resulting products can be used as soil amendments and fertilizer. However, the emissions of greenhouse gases (GHGs) such as CO2, CH4, and N2O produced in composting are of considerable concern. Hence, various additives have been developed and adopted to control the emissions of GHGs. This review presents the different additives used during composting and summarizes the effects of additives on GHGs during composting. Thirty-four studies were reviewed, and their results showed that the additives can reduce cumulative CO2, CH4, and N2O emission by 10.5%, 39.0%, and 28.6%, respectively, during composting. Especially, physical additives (e.g., biochar and zeolite) have a greater effect on mitigating N2O emissions during composting than do chemical additives (e.g., phosphogypsum and dicyandiamide). In addition, superphosphate had a high CO2 reduction effect, whereas biochar and dicyandiamide had a high N2O reduction effect. This implies that the addition of superphosphate, biochar, and dicyandiamide during composting can contribute to mitigating GHG emissions. Further research is needed to find novel additives that can effectively reduce GHG emissions during composting.

Effects of Application of Rendered Carcass Residue on Greenhouse Gases and Pepper Growth (랜더링된 가축사체 잔류물 시용이 온실가스 및 고추 생육에 미치는 영향)

  • Jae-Hyuk Park;Dong-Wook Kim;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.457-464
    • /
    • 2023
  • The rendering residue generated by rendering disposal, an eco-friendly livestock carcass disposal method, is a useful agricultural resource. Methods for recycling this are being actively researched, and this study investigated the impact of applying rendered residue directly to soil on crop productivity and the agricultural environment. The chemical properties of the rendering residue were examined. The pH, OM, T-N, T-P, CaO, K2O, and MgO content values were 5.47%, 59.8%, 9.22%, 2.96%, 2.16%, 0.51% and 0.10%, respectively. Treatment conditions were divided into control, inorganic fertilizer, and rendering residue, and rendering residue corresponding to 50, 100, and 200% nitrogen content was applied based on the amount of inorganic fertilizer nitrogen input. Greenhouse gases and ammonia were collected during the cultivation period. Rendering residue increased both the yield and growth of peppers and was effective in improving nutrients such as pH and OM of the soil after harvest. However, compared to inorganic fertilizer treatment, it increased emissions of nitrous oxide and methane as well as ammonia. It is judged that the direct agricultural use of rendering residue is difficult, and a utilization method is needed.

Impact of livestock industry on climate change: Case Study in South Korea - A review

  • Sun Jin Hur;Jae Min Kim;Dong Gyun Yim;Yohan Yoon;Sang Suk Lee;Cheorun Jo
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.405-418
    • /
    • 2024
  • In recent years, there has been a growing argument attributing the primary cause of global climate change to livestock industry, which has led to the perception that the livestock industry is synonymous with greenhouse gas (GHG) emissions. However, a closer examination of the global GHG emission by sector reveals that the energy sector is responsible for the majority, accounting for 76.2% of the total, while agriculture contributes 11.9%. According to data from the Food and Agriculture Organization of the United Nations (FAO), the total GHG emissions associate with the livestock supply chain amount to 14.5%. Within this, emissions from direct sources, such as enteric fermentation and livestock manure treatment, which are not part of the front and rear industries, represent only 7%. Although it is true that the increase in meat consumption driven by global population growth and rising incomes, has contributed to higher methane (CH4) emissions resulting from enteric fermentation in ruminant animals, categorizing the livestock industry as the primary source of GHG emissions oversimplifies a complex issue and disregards objective data. Therefore, it may be a misleading to solely focus on the livestock sector without addressing the significant emissions from the energy sector, which is the largest contributor to GHG emissions. The top priority should be the objective and accurate measurement of GHG emissions, followed by the development and implementation of suitable reduction policies for each industrial sector with significant GHG emissions contributions.

Coated cysteamine, a potential feed additive for ruminants - An updated review

  • Muhammad Umar Yaqoob; Jia Hou;Li Zhe;Yingying Qi;Peng Wu;Xiangde Zhu;Xiaoli Cao;Zhefeng Li
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.161-172
    • /
    • 2024
  • For sustainable development, better performance, and less gas pollution during rumen fermentation, there is a need to find a green and safe feed additive for ruminants. Cysteamine (CS) is a biological compound naturally produced in mammalian cells. It is widely used as a growth promoter in ruminants because of its ability to control hormone secretions. It mainly controls the circulating concentration of somatostatin and enhances growth hormone production, leading to improved growth performance. CS modulates the rumen fermentation process in a way beneficial for the animals and environment, leading to less methane production and nutrients loss. Another beneficial effect of using CS is that it improves the availability of nutrients to the animals and enhances their absorption. CS also works as an antioxidant and protects the cells from oxidative damage. In addition, CS has no adverse effects on bacterial and fungal alpha diversity in ruminants. Dietary supplementation of CS enhances the population of beneficial microorganisms. Still, no data is available on the use of CS on reproductive performance in ruminants, so there is a need to evaluate the effects of using CS in breeding animals for an extended period. In this review, the action mode of CS was updated according to recently published data to highlight the beneficial effects of using CS in ruminants.

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park;Seung Jin Joo;Jaseok Lee;Dongmin Seo;Hyun Seok Kim;Jihyeon Jeon;Chung Weon Yun;Jeong Eun Lee;Sei-Woong Choi;Jae-Young Lee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.264-271
    • /
    • 2023
  • Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

Calculation and Projection of Methane Emissions from Waste Landfill for GHG Emission Reduction: Case Study of Puerto Cortes Landfill in Honduras (폐기물 매립지의 온실가스 감축을 위한 메탄가스 배출량 평가: 온두라스 Puerto Cortes 매립장 사례 분석)

  • Choong Gon Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • The objective of this study was to assess the feasibility of a landfill project aimed at reducing greenhouse gas (GHG) from Puerto Cortes Landfill in Honduras ("Project"). The feasibility study involved surveying the status, composition and amount of waste entering the landfill, and projecting GHG emissions from the landfill. A projection of the GHG emissions with the IPCC model and based on the survey results indicated that the period 2027 to 2041 would see a total GHG emission reduction of 506,835 ton-CO2/year, with a mean yearly GHG emission reduction of 33,789 ton-CO2, assuming landfill gas collection is implemented, The findings of the study are expected to serve as basic data for deciding about whether and how to proceed with the Project.

Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry (고압 시차 주사 열량계를 이용한 단일 객체 가스 하이드레이트의 해리 엔탈피 측정)

  • Lee, Seungmin;Park, Sungwon;Lee, Youngjun;Kim, Yunju;Lee, Ju Dong;Lee, Jaehyoung;Seo, Yongwon
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.666-671
    • /
    • 2012
  • Gas hydrates are inclusion compounds formed when small-sized guest molecules are incorporated into the well defined cages made up of hydrogen bonded water molecules. Since large masses of natural gas hydrates exist in permafrost regions or beneath deep oceans, these naturally occurring gas hydrates in the earth containing mostly $CH_4$ are regarded as future energy resources. The heat of dissociation is one of the most important thermal properties in exploiting natural gas hydrates. The accurate and direct method to measure the dissociation enthalpies of gas hydrates is to use a calorimeter. In this study, the high pressure micro DSC (Differential Scanning Calorimeter) was used to measure the dissociation enthalpies of methane, ethane, and propane hydrates. The accuracy and repeatability of the data obtained from the DSC was confirmed by measuring the dissociation enthalpy of ice. The dissociation enthalpies of methane, ethane, and propane hydrates were found to be 54.2, 73.8, and 127.7 kJ/mol-gas, respectively. For each gas hydrate, at given pressures the dissociation temperatures which were obtained in the process of enthalpy measurement were compared with three-phase (hydrate (H) - liquid water (Lw) - vapor (V)) equilibrium data in the literature and found to be in good agreement with literature values.