• Title/Summary/Keyword: methane($CH_4$)

Search Result 732, Processing Time 0.021 seconds

Thermophilic Anaerobic Digestion of Polyhydroxybutyrate with and without Thermo-alkaline Pretreatment (열적-알칼리성 전처리 유무에 따른 폴리하이드록시부티레이트의 고온 혐기성 소화 영향 연구)

  • Jihyeon Lee;Joonyeob Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.121-129
    • /
    • 2024
  • The study investigated the effect of thermo-alkaline pretreatment on the solubilization of polyhydroxybutyrate (PHB) and its potential to enhance of thermophilic anaerobic digestion, focusing on biochemical methane potential (BMP) and methane production rate, using two different particle sizes of PHB (1500 ㎛ and 400 ㎛). Thermo-alkaline pretreatment tests were conducted at 90 ℃ for 24 hours with varying NaOH dosages from 0-80% (w/w). BMP tests with untreated PHB exhibited methane production ranging from 150.4~225.4 mL CH4/g COD and 21.5~24.2 mL CH4/g VSS/d, indicating higher methane production for smaller particle sizes of PHB, 400 ㎛. Thermo-alkaline pretreatment tests achieved a 95.3% PHB solubilization efficiency when 400 ㎛ PHB particles were treated with 80% NaOH dosage at 90 ℃ for 24 hours. BMP tests with pretreated PHB showed substantial improvement in thermophilic anaerobic digestion, with an increase of up to 112% in BMP and up to 168% in methane production rate. The results suggest that a combined pretreatment process, including physical (400 ㎛ PHB particles) and thermo-alkaline (90 ℃, 40-80% NaOH dosage, and 24 hours reaction time), is required for high-rate thermophilic anaerobic digestion of PHB with enhanced methane production.

Production of Hydrogen from Methane by 3phase AC GlidArc Plasma (3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산)

  • Chun, Young-Nam;Kim, Seong-Cheon;Lim, Mun-Seup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2232-2237
    • /
    • 2007
  • Steam reforming and catalytic reforming of $CH_4$ conversion to produce synthesis gas require both high temperatures and high pressure. Non-thermal plasma is considered to be a promising technology for the hydrogen rich gas production from methane. In this study, three phase AC GlidArc plasma system was employed to investigate the effects of gas composition, gas flow rate, catalyst reactor temperature and applied electric power on the $CH_4$ and $H_2$ yield and the product distribution. The studied system consisted of three electrode and it connected AC generate power system different voltages. In this study, air was used for the partial oxidation of methane. The results showed that increasing gas flow rate, catalyst reactor temperature, or electric power enhanced $CH_4$ conversion and $H_2$ concentration. The reference conditions were found at a $O_2$/C molar ratio of 0.45, a feed flow rate of 4.9 ${\ell}$/min, and input power of 1kW for the maximum conversions of $CH_4$ with a high selectivity of $H_2$ and a low reactor energy density.

  • PDF

Preparation and Characterization of Molecular Sieving Carbon by Methane and Benzene Cracking over Activated Carbon Spheres

  • Joshi, Harish Chandra;Kumar, Rajesh;Singh, Rohitashaw Kumar;Lal, Darshan
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Molecular sieving carbon (MSC) for separating $O_2-N_2$ and $CO_2-CH_4$ has been prepared through chemical vapor deposition (CVD) of methane and benzene on activated carbon spheres (ACS) derived from polystyrene sulfonate beads. The validity of the material for assessment of molecular sieving behavior for $O_2-N_2$ and $CO_2-CH_4$ pair of gases was assessed by the kinetic adsorption of the corresponding gases at $25^{\circ}C$. It was observed that methane cracking on ACS lead to deposition of carbon mostly in whole length of pores rather than in pore entrance, resulting in a reduction in adsorption capacity. MSC showing good selectivity for $CO_2-CH_4$ and $O_2-N_2$ separation was obtained through benzene cracking on ACS with benzene entrantment of $0.40{\times}10^{-4}\;g/ml$ at cracking temperature of $725^{\circ}C$ for a period of 90 minutes resulting in a selectivity of 3.31:1.00 for $O_2-N_2$ and 8.00:1.00 for $CO_2-CH_4$ pair of gases respectively.

Relationships between Methane Production and Sulfate Reduction in Reclaimed Rice Field Soils

  • Lee, Ju-Hwan;Cho, Kang-Hyun
    • Animal cells and systems
    • /
    • v.8 no.4
    • /
    • pp.281-288
    • /
    • 2004
  • The change in relationships between methane production and sulfate reduction was investigated in reclaimed rice field soils at different time points after reclamation of tidal flat in Korea. Sulfate concentrations of soils in the ca. 60-year-old and 26-year-old reclaimed rice fields were much lower than that in a natural tidal flat. During 60 d of anaerobic incubation, total methane production and sulfate consumption of the soil slurries were 7.0 ${\mu}$mol $CH_4$/g and 8.2 ${\mu}$mol $SO_4^{2-}$/g in the 60-year-old rice field, 5.6 ${\mu}$mol $CH_4$/g and 12.7 mmol $SO_4^{2-}$/g in the 26-year-old rice field, and ca. 0 mmol $CH_4$/g and 22.4 ${\mu}$mol $SO_4^{2-}$/g in a natural tidal flat. Relative percent electron flow through sulfate reduction in the 60-year-old rice field was much lower (50.8%) compared with the 26-year-old rice field (69.3%) and the tidal flat (99.9%). The addition of an inhibitor of methanogenesis (2-bromoethanesulfonate) had no effect on sulfate reduction in the soil slurries of the reclaimed rice fields. However, instant stimulation of methane production was achieved with addition of an inhibitor of sulfate reduction (molybdate) in the soil slurries from the 26-year-old reclaimed rice field. The specific inhibitor experiments suggest that the relationship of methanogenesis and sulfate reduction might become mutually exclusive or syntrophic depending on sulfate content in the soil after reclamation. Sulfate, thus sulfate reduction activity of sulfate-reducing bacteria, would be an important environmental factor that inhibits methane production and determines the major pathway of electron and carbon flow in anaerobic carbon mineralization of reclaimed rice field soils.

Assessment of Methane (CH4) Emissions from Rice Paddy and Crop Residues Burning in 2011 with the IPCC Guideline Methodology

  • Choi, Eun Jung;Lee, Jong Sik;Jeong, Hyun Cheol;Kim, Gun Yeob;So, Kyu Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.575-578
    • /
    • 2013
  • Rice cultivation in the paddy field and the burning of crop residues have been identified as the important sources of methane emission in agricultural sector. This study aimed at assessment of the methane emission from croplands in the year of 2011 with the IPCC guideline methodology. Methane from rice cultivation was emitted 6,813 $CO_2$-eq Gg in 2011. According to the water management, methane emission amounts by continuously flooded and intermittently flooded were 1,499 and 5,314 $CO_2$-eq Gg, respectively. Methane emission by crop residues burning was highest in red pepper and followed by rice straw, pulses and barely in 2011. Methane emission by field burning was very little compared with rice cultivation.

The Measurement of Biochemical Methane Potential in the Several Organic Waste Resources (유기성 폐자원별 메탄 생산 퍼텐셜 측정 연구)

  • Kim, Seung-Hwan;Kim, Hyun-Cheol;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.356-362
    • /
    • 2010
  • This research studied the bio-methane potential of several waste biomass materials as alternative sources for biogas production, and the laboratory procedure for measuring the biochemical methane potential was described. The wastes from four agro-industries (sewage, livestock, food wastewater treatment sludge and cattle rumen substance generating in slaughter house) were evaluated as substrates for the assay of biochemical methane potential. In order to estimate the ultimate methane yield, two empirical equations (modified Gompertz equation and exponential equation) was investigated. The ultimate methane yield of sewage, livestock, food sludge and lumen substance estimated by the modified Gompertz equation were 0.086, 0.147, 0.146, and 0.121 L $CH_{4}\;g^{-1}\;VS_{added}$, respectively. The ultimate methane yield estimated by the exponential equation were 0.109, 0.246 and 0.174 L $CH_{4}\;g^{-1}\;VS_{added}$ in sewage, livestock sludge and lumen substance. And the ultimate methane yield estimated by the exponential equation showed more high values in the range of 26.7 ~67.3% than the ultimate methane yield estimated by the modified Gompertz equation.

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 edge flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Structure of Edge Flame in a Methane-Oxygen Mixing Layer (메탄/순산소 혼합층에서 Edge Flame의 구조)

  • Choi, S.K.;Kim, J.;Chung, S.H.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

Recovery of Sustainable Renewable Energy from Marine Biomass

  • Gurung, Anup;Oh, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.156-161
    • /
    • 2012
  • Marine biomass is considered an important substrate for anaerobic digestion to recovery energy i.e. methane. Nevertheless, marine biomass has attracted little attention by researchers compared to terrestrial feedstock for anaerobic digestion. In this study, biochemical methane potential (BMP) test was used to evaluate generation of renewable energy from starfish. A cumulative biogas yield of $748{\pm}67mL\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The cumulative methane yield of $486{\pm}28mL\;CH_4\;g^{-1}VS^{-1}$ was obtained after 60 days of digestion. The methane content of the biogas was approximately 70%. The calculated data applying the modified Gompertz equation for the cumulative $CH_4$ production showed good correlation with the experimental result obtained from this batch study. Since the result obtained from this study is comparable to results with other substrates, marine biomass can be co-digested with food waste or swine wastewater to produce $CH_4$ gas that will help to reduce the gap in global energy demand.