• Title/Summary/Keyword: meter

Search Result 3,744, Processing Time 0.034 seconds

Implementation of the mote Image Based Metering System bridging with PCS Network (PCS망을 연동한 원격영상 검침시스템 구현)

  • Lee, Chang-Su;Na, Jong-Ray;Hwang, Jin-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.1041-1048
    • /
    • 2003
  • This paper implements a remote image based metering(IBM) system which capture meter image, recognizes number automatically, and send the data wirelessly through PCS data network. We use existing gas/water meter and get NTSC camera image by installing small monochrome CMOS camera on the meter closely. For remote data transfer, we use SMS (short message service) that is provided by commercial PCS network. We developed DVR(digital video recorder) for capturing meter image and character recognition algorithm. In addition, hardware and software for SMS and meter selector were developed.

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

Automation of Roadway Lighting Illuminance Measurement

  • BAO, Jieyi;HU, Xiaoqiang;JIANG, Yi;LI, Shuo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.705-711
    • /
    • 2022
  • Roadway lighting is an integral element of a highway system. Luminaires on roadways provide viewing conditions for drivers and pedestrians during nighttime in order to improve safety. It is time-consuming and labor-intensive to manually measure roadway illuminance at predetermined spots with a handheld illuminance meter. To improve the efficiency of illuminance measurement, a remote-control electrical cart and a drone were utilized to carry an illuminance meter for the measurements. The measurements were performed on the marked grid points along the pavement. To measure the illuminance manually, one person measures illuminance at each grid point with the handheld meter and another person records the illuminance value. To measure the illuminance with the remote-control cart, the illuminance meter is attached to the cart and it measures illuminance values continuously as the cart moves along the grid lines. With the drone, the meter records the illuminance continuously as the drone carries the meter and flies along the grid line. Because the drone can fly at different heights, the measurements can be done at different altitudes. The illuminance measurements using the cart and the drone are described in detail and compared with manual measurements in this paper. It is shown through this study that automated measurements can greatly improve the efficiency of roadway illuminance data measurements.

  • PDF

Development of LoRa IoT Automatic Meter Reading and Meter Data Management System for Smart Water Grid (스마트워터그리드를 위한 LoRa IoT 원격검침 및 계량데이터 시스템 개발)

  • Park, Jeong-won;Park, Jae-sam
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.172-178
    • /
    • 2022
  • In this paper, water meter AMR(automatic meter reading), one of the core technologies of smart water grid, using LoRa IoT network is studied. The main content of the research is to develop the network system and show the test results that one PC server receives the readings of water meters from multiple households through LoRa communication and stores them in the database, and at the same time sends the data to the web server database through internet. The system also allows users to monitor the meter readings using their smartphones. The hardware and firmware of the main board of the digital water meter are developed. For a PC server program, MDMS(meter data management system) is developed using Visual C#. The app program running on the user's smartphone is also developed using Android Studio. By connecting each developed parts, the total network system is mounted on a flow test bench in the laboratory and tested. For the fields test, 5 places around the university are selected and the transmission distances are tested. The test result show that the developed system can be applied into the real field. The developed system can be expanded to various social safety nets such as monitoring the living alone or elderly with dementia.

Development of Calibration Equation of Portable Slip Meter(ONO·PPSM) through Comparative test of O-Y·PSM and ONO·PPSM (경사인장형 미끄럼시험기(O-Y·PSM)와의 비교실험을 통한 휴대형 미끄럼시험기(ONO·PPSM)의 교정식 작성)

  • Shin, Yoon-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.5
    • /
    • pp.155-161
    • /
    • 2009
  • This paper is the result of an investigation of a PORTABLE SLIP METER(ONO PPSM) by means of an experiment to determine its validity as a slip meter. ONO PPSM is a portable slip meter that was designed to address the weak points of PULL SLIP METER(O-Y PSM), which can be used to obtain an accurate measurement of slip resistance, but is very heavy and difficult to operate. To determine the stability of the measurement result of ONO PPSM, we measured the slip resistance against 4 different kind of floor materials. Our findings showed that the coefficient of variability of CSR' is less than 0.05. Furthermore, we verified the relationship between CSR' and CSR. More specifically, by performing the slip test against 7 different kinds of inorganic matter floor materials, we increased the usability of ONO PPSM as a slip meter by suggesting a method of sharing the evaluation index of slip of CSR' and C.S.R.

An Evaluative Study on ESD(Entrance Surface Dose) by Posture Changes for Fluoroscopy (투시 검사 시 체위 변화에 따른 입사표면선량의 평가 연구)

  • Yang, Hae-Doo;Hong, Seon-Sook;Park, Eun-Seong;Seong, Min-Sook;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.4
    • /
    • pp.177-183
    • /
    • 2011
  • This study intends to investigate patients' exact exposure doses by comparatively measuring ESD (Entrance Surface Dose) with the DAP meter, which excludes scattered rays, and ESD with the Xi multifunction meter, which includes scattered rays, by posture changes for Esophagography test and UGI test. The materialwere examined through Sonialvision-SafireII SPEC overtube system. ESD was measured by using the DAP meter, and as a tool to measure ESD including scattered rays on the plane of incidence of human phantom, the Xi multifunction meter was used. The average fluoroscopic time of Esophagography test was 4.192 minutes and the average number of images was 47.7, while the average fluoroscopic time of UGI test was 6.881 minutes and the average number of images was 37.8. The ratios of the incident dose of DAP meter and the ESD of Xi meter were calculated bydividing the fluoroscopic time and the number of images by each posture change. As for Esophagography test, the dose increased by 21.6~55.5% in the fluoroscopic test and by 4.8~24.7% in the spot test. In the front spot test, however, the does increased by as little as 5.3%. As for UGI test, the dose increased by 21.1~49.5% in the fluoroscopic test and by 10.1~34.9% in the spot test. It is expected that measuring doses in consideration of scattered rays by posture changes will be an important index in evaluating and managing patients' exact exposure doses for each test above. Furthermore, it is judged that this sort of study is inevitable and desirable to reduce patients' exposure doses after all.

  • PDF

AMI System Using Smart Electricity Meter Embedded with Home Concentrate Unit (세대집중화장치를 포함하는 스마트 전력량계를 이용한 AMI 시스템)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.537-546
    • /
    • 2019
  • In this paper, a system that integrates a home concentrate unit(HCU) in a smart electricity meter to collects water, gas, hot water, and heating usage required for AMI has been proposed. The collected data could be transmitted to the in house display(IHD) and server to provide a more economical AMI system. The developed system is less expensive in the network configuration than the existing system, which could reduce the operating cost, and be easy to install. By applying the developed system, the usage of electricity, water, gas, hot water and heating could be measured and these make it easier to apply AMI system. The main contents of the development are the smart electricity meter and embedding of HCU into the smart electricity meter, and transferring these data to IHD and server to structure the AMI system. The each developed unit has been networked to structure the AMI system to perform the actual meter reading operation and show the result.

Development of Intelligent AMI Sensing Technique Using ICT (기존 전력량계를 ICT 기반 지능형 AMI 센싱 장치로 변환 연구)

  • Sang-Ok Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.23-28
    • /
    • 2023
  • The installation rate of AMI(: Advanced Metering Infrastructure) capable of automatic electricity measurement is less than 43% nationwide and 10.5% in rural areas, which is very poor. Therefore, for the smart grid, automatic information recording of the watt-hour meter is required. For this purpose, it is necessary to develop a system capable of remote meter reading and use control by improving the existing watt-hour meter. In this paper, in order to enable the AMI function of the existing electricity meter, the remote meter reading and control technology of the existing electricity meter for AMI, the core of the smart grid, was developed using IoT and AI. The main research content was to recognize numbers using Tensorflow and Open-cv to convert it into a power meter sensing device for SG. We confirmed and checked the performance using the protyope system.

Development of Intelligent AMI Sensing Technique Using ICT (기존 전력량계를 ICT 기반 지능형 AMI 센싱 장치로 변환 연구)

  • Lee, Yang-weon;Ok, Youn-sang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.546-549
    • /
    • 2022
  • The installation rate of AMI (advanced metering infrastructure) capable of automatic electricity measurement is less than 43% nationwide and 10.5% in rural areas, which is very poor. Therefore, for the smart grid, automatic information recording of the watt-hour meter is required. For this purpose, it is necessary to develop a system capable of remote meter reading and use control by improving the existing watt-hour meter. In this paper, in order to enable the AMI function of the existing electricity meter, the remote meter reading and control technology of the existing electricity meter for AMI, the core of the smart grid, was developed using IoT and AI. The main research content was to recognize numbers using Tensorflow and Open-cv to convert it into a power meter sensing device for SG. We confirmed and checked the performance using the protyope system.

  • PDF

Usefulness of wearing pocket dosimeter in nuclear medicine (핵의학 영상검사에서 Pocket dosimeter 착용의 유용성 평가)

  • Kim, Young-Bin;Lee, Eun-Ji;Kim, Kun-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 2011
  • Purpose: The aim of study is to find accuracy of pocket dosimeter in measuring exposed dose in compared with survey meter and to compare exposed dose according as Nuclear medicine exams. Materials and Method: First, radiation dose to point source(185 MBq,370 MBq, ${\ldots}$, 1665 MBq, 1850 MBq) were measured in using a pocket dosimeter and a survey meter. Second, radiation dose to 12 patients injected $^{18}F$-FDG 370 MBq were measured in using a pocket dosimeter and a survey meter. Third, radiation dose to 10 patients injected $^{99m}Tc$-DPD 925 MBq were measured in using a pocket dosimeter and a surveymeter. Result: The average is $70.12{\pm}39.36{\mu}Sv/h$ in measurement of point source with Surveymeter and $5{\pm}3.06{\mu}Sv$ in measurement of point source with Pocket dosimeter. The average is $25.04{\pm}6.16{\mu}Sv/h$ in measurement of PET/CT patients with Surveymeter and $2.41{\pm}0.51{\mu}Sv$ in measurement of PET/CT with Pocket dosimeter. The average is $8.58{\pm}0.96{\mu}Sv/h$ in measurement of Bone Scan patients with Surveymeter and $1{\mu}Sv$ in measurement of Bone Scan patients with Pocket dosimeter. Significant difference found between Survey meter value and Pocket dosimeter value in all experimentation (p<0.001). Conclusion: Accoring to rusult Wearing Pocket dosimeter is usefulnee in manerage of exposed dose in nucler medicine exams.

  • PDF