• Title/Summary/Keyword: meteorological service

Search Result 256, Processing Time 0.027 seconds

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

Web-based Geovisualization System of Oceanographic Information using Dynamic Particles and HTML5 (동적 파티클과 HTML5를 이용한 웹기반 해양정보 가시화시스템)

  • Kim, Jinah;Kim, Sukjin
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.660-669
    • /
    • 2017
  • In order to improve user accessibility and interactivity, system scalability, service speed, and a non-standard internet web environment, we developed a Web-based geovisualization system of oceanographic information using HTML5 and dynamic particles. In particular, oceanographic and meteorological data generated from a satellite remote sensing and radar measurement and a 3-dimensioanl numerical model, has the characteristics of a heterogeneous large-capacity multi-dimensional continuous spatial and temporal variability, based on geographic information. Considering those attributes, we applied dynamic particles represent the spatial and temporal variations of vector type oceanographic data. HTML5, WebGL, Canvas, D3, and Leaflet map libraries were also applied to handle various multimedia data, graphics, map services, and location-based service as well as to implement multidimensional spatial and statistical analyses such as a UV chart.

Fire Risk Assessment Based on Weather Information Using Data Mining (데이터마이닝을 이용한 기상정보에 따른 화재 위험 평가)

  • Ryu, Joung Woo;Kwon, Seong-Pil
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.88-95
    • /
    • 2015
  • We propose a weather-related service for fire risk assessment in order to increase fire safety awareness in everyday life. The proposed service offers a fire risk assessment level according to weather forecasts and a degree of fire risk according to fire factors under certain weather conditions. In order to estimate the fire risk, we produced a risk matrix through data mining with a decision tree using investigation data and weather data. Through the proposed service, residents can calculate the degree of fire risk under certain weather conditions using the fire factors around them. In addition, they can choose from various solutions to reduce fire risk. In order to demonstrate the feasibility of the proposed services, we developed a system that offers the services. Whenever weather forecasting is carried out by the Korea Meteorological Administration, the system produces the fire risk assessment levels for seven major cities and nine provinces of South Korea in an online process, as well as the fire risk according to fire factors for the weather conditions in each region.

Estimation of Solar Energy Based on High-Resolution Digital Elevation Model on the Seoul Area (서울지역의 고해상도 수치표고모델기반 태양 에너지 산출)

  • Jee, Joon-Bum;Jang, Min;Min, Jae-Sik;Zo, Il-Sung;Kim, Bu-Yo;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.3
    • /
    • pp.331-344
    • /
    • 2017
  • Solar energy is calculated using high-resolution digital elevation model (DEM). In focus on Seoul metropolitan area, correction coefficients of direct and diffuse solar energy with the topographic effect are calculated from DEM with 1720, 900, 450, 90 and 30 spatial resolutions ($m{\times}m$), respectively. The solar energy on the real surface with high-resolution is corrected using by the correction coefficients with topographic effect from the solar energy on horizontal surface with lower resolution. Consequently, the solar energy on the real surface is more detailed distribution than those of horizontal surface. In particular, the topographic effect in the winter is larger than summer because of larger solar zenith angle in winter. In Seoul metropolitan area, the monthly mean topographic effects are more than 200% in winter and within 40% in summer. And annual topographic effects are negative role with more than -60% and positive role with below 40%, respectively. As a result, topographic effect on real surface is not a negligible factor when calculating and analyzing solar energy using regional and global models.

Accuracy Verification of the SBAS Tropospheric Delay Correction Model for the Korean Region (한반도 지역 SBAS 대류층 지연 보정 모델의 정확도 검증)

  • Kim, Dong-uk;Han, Deok-hwa;Kee, Chang-don;Lee, Chul-soo;Lee, Choong-hee
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this paper, we verified accuracy of the satellite based augmentation system (SBAS) tropospheric delay correction model for the Korean region. We employed the precise data of the tropospheric zenith path delay (ZPD) which is provided by the international GNSS service (IGS). In addition, we compared the verification results with that of the Saastamoinen model and the Hopfield model. Consequently, the bias residual error of the SBAS tropospheric delay correction model is about 50 mm, whereas the Saastamoinen model and the Hopfield model are more accurate. This residual error by the tropospheric delay model can affect the SBAS user position accuracy, but there is no problem in SBAS accuracy requirement. If we modified the meteorological parameters for SBAS tropospheric model to appropriate in Korean weather environment, we can provide better SBAS service to the Korean user.

Characteristics of Norovirus Food Poisoning Outbreaks in Korea over the Past Ten Years and the Relation with Climate Factors (우리나라에서 지난 10년간 노로바이러스 식중독 발생의 특징과 기후요소와의 관련성)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.622-629
    • /
    • 2019
  • Objectives: The occurrence of norovirus food poisoning in South Korea has been reported since 2003. This study was performed to investigate the characteristics of norovirus food poisoning outbreaks in Korea from 2006 to 2015 and to analyze the relationship between these outbreaks and climate factors. Methods: Data on norovirus food poisoning outbreaks were obtained from the Korea Ministry of Food and Drug Safety. Data on climate factors were obtained from the Korea Meteorological Administration. Frequency analysis and Pearson's correlation analysis were adopted for this study. Results: During the study period, norovirus was the greatest contributing factor of food poisoning outbreaks. Approximately half of the outbreaks of norovirus food poisoning occurred in winter. Average temperature, highest and lowest temperatures, precipitation, number of days with rainfall, and humidity all had a significant negative correlation with monthly number of outbreaks of norovirus food poisoning (p<0.05). Among these, the lowest and average temperature showed higher correlation coefficients. However, the sum of the outbreaks in spring and autumn was similar to that of winter, and more than one-third occurred in group meal-service settings, including school lunches. This was strongly assumed as the use of norovirus-contaminated groundwater for preparation of meals in some settings. Conclusion: The cold and dry of the winter season in Korea may assist the transmission of norovirus. Also, the use of groundwater in group meal service is suspected of inducing a larger scale of norovirus food poisoning. Both health authorities and community-based prevention and control measures are required to respond to these complex etiological outbreaks.

A change of the public's emotion depending on Temperature & Humidity index (온습도에 따른 대중의 감성(감정+감각) 활동 변화)

  • Yang, Junggi;Kim, Geunyoung;Lee, Youngho;Kang, Un-Gu
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.243-252
    • /
    • 2014
  • Many researches about the effect on politics, economics and Sociocultural phenomenon using the social media are in progress. Authors utilized NAVER Trend most famous web browsing service in korea, NAVER Blog social media, NAVER Cafe service and Open Data(API) and also used temperature, humidity index data of Korea Meteorological Administration. This study analyzed a change of the public's emotion in korea using Cluster analysis of vocabulary of taste among its of feelings and senses. K-means clustering was followed by decision of the number of groups which was used Chi-square goodness of fit test and ward analysis. Eight groups was made and it represented sensitive vocabulary. By Discriminant analysis, eight groups decided by Cluster analysis has 98.9% accuracy. The change of the public's emotion has capability to predict people's activity so they can share sensibility and a bond of sympathy developed between them.

GEO-KOMPSAT-2A AMI Best Detector Select Map Evaluation and Update (천리안위성2A호 기상탑재체 Best Detector Select 맵 평가 및 업데이트)

  • Jin, Kyoungwook;Lee, Sang-Cherl;Lee, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.359-365
    • /
    • 2021
  • GEO-KOMPSAT-2A (GK2A) AMI (Advanced Meteorological Imager) Best Detector Select (BDS) map is pre-determined and uploaded before the satellite launch. After the launch, there is some possibility of a detector performance change driven by an abrupt temperature variation and thus the status of BDS map needs to be evaluated and updated if necessary. To investigate performance of entire elements of the detectors, AMI BDS analyses were conducted based on a technical note provided from the AMI vendor (L3HARRIS). The concept of the BDS analysis is to investigate the stability of signals from detectors while they are staring at targets (deep space and internal calibration target). For this purpose, Long Time Series (LTS) and Output Voltage vs. Bias Voltage (V-V) methods are used. The LTS for 30 secs and the V-V for two secs are spanned respectively for looking at the targets to compute noise components of detectors. To get the necessary data sets, these activities were conducted during the In-Orbit Test (IOT) period since a normal operation of AMI is stopped and special mission plans are commanded. With collected data sets during the GK2A IOT, AMI BDS map was intensively examined. It was found that about 1% of entire detector elements, which were evaluated at the ground test, showed characteristic changes and those degraded elements are replaced by alternative best ones. The stripping effects on AMI raw images due to the BDS problem were clearly removed when the new BDS map was applied.

Hail Risk Map based on Multidisciplinary Data Fusion (다학제적 데이터 융합에 기초한 우박위험지도)

  • Suhyun, Kim;Seung-Jae, Lee;Kyo-Moon, Shim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.234-243
    • /
    • 2022
  • In Korea, hail damage occurs every year, and in the case of agriculture, it causes severe field crop and cultivation facility losses. Therefore, it is necessary to develop a hail information service system customized for Korea's primary production and crop-growing areas to minimize hail damage. However, the observation of hail is relatively more difficult than that of other meteorological variables, and the available data are also spatially and temporally variable. A hail information service system was developed to understand the temporal and spatial distribution of hail occurrence. As part of this, a hail observation database was established that integrated the observation data from Korea Meteorological Administration with the information from newspaper reports. Furthermore, a hail risk map was produced based on this database. The risk map presented the nationwide distribution and characteristics of hail showers from 1970 to 2018, and the northeastern region of South Korea was found to be relatively dangerous. Overall, hail occurred nationwide, especially in the northeast and some inland areas (Gangwon, Gyeongbuk, and Chungbuk province) and in winter, mainly on the north coast and some inland areas as graupel (small and soft hail). Analyzing the time of day, frequency, and hailstone size of hail shower occurrences by region revealed that the incidence of large hail stones (e.g., 10 cm at Damyang-gun) has increased in recent years and that showers occurred mainly in the afternoon when the updraft was well formed. By integrating multidisciplinary data, the temporal and spatial gap in hail data could be supplemented. The hail risk map produced in this study will be helpful for the selection of suitable crops and growth management strategies under the changing climate conditions.

User-specific Agrometeorological Service to Local Farming Community: A Case Study (농가맞춤형 기상서비스 시범사업)

  • Yun, Jin I.;Kim, Soo-Ock;Kim, Jin-Hee;Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.320-331
    • /
    • 2013
  • The National Center for AgroMeteorology (NCAM) has designed a risk management solution for individual farms threatened by the climate change and variability. The new service produces weather risk indices tailored to the crop species and phenology by using site-specific weather forecasts and analysis derived from digital products of the Korea Meteorological Administration (KMA). If the risk is high enough to cause any damage to the crops, agrometeorological warnings or watches are delivered to the growers' cellular phones with relevant countermeasures to help protect their crops against the potential damage. Core techniques such as scaling down of weather data to individual farm level and the crop specific risk assessment for operational service were developed and integrated into a cloud based service system. The system was employed and implemented in a rural catchment of 50 $km^2$ with diverse agricultural activities and 230 volunteer farmers are participating in this project to get the user-specific weather information from and to feed their evaluations back to NCAM. The experience obtained through this project will be useful in planning and developing the nation-wide early warning service in agricultural sector exposed to the climate and weather extremes under climate change and climate variability.