Browse > Article
http://dx.doi.org/10.14191/Atmos.2017.27.3.331

Estimation of Solar Energy Based on High-Resolution Digital Elevation Model on the Seoul Area  

Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies)
Jang, Min (Weather Information Service Engine, Hankuk University of Foreign Studies)
Min, Jae-Sik (Weather Information Service Engine, Hankuk University of Foreign Studies)
Zo, Il-Sung (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Kim, Bu-Yo (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Lee, Kyu-Tae (Research Institute for Radiation-Satellite, Gangneung-Wonju National University)
Publication Information
Atmosphere / v.27, no.3, 2017 , pp. 331-344 More about this Journal
Abstract
Solar energy is calculated using high-resolution digital elevation model (DEM). In focus on Seoul metropolitan area, correction coefficients of direct and diffuse solar energy with the topographic effect are calculated from DEM with 1720, 900, 450, 90 and 30 spatial resolutions ($m{\times}m$), respectively. The solar energy on the real surface with high-resolution is corrected using by the correction coefficients with topographic effect from the solar energy on horizontal surface with lower resolution. Consequently, the solar energy on the real surface is more detailed distribution than those of horizontal surface. In particular, the topographic effect in the winter is larger than summer because of larger solar zenith angle in winter. In Seoul metropolitan area, the monthly mean topographic effects are more than 200% in winter and within 40% in summer. And annual topographic effects are negative role with more than -60% and positive role with below 40%, respectively. As a result, topographic effect on real surface is not a negligible factor when calculating and analyzing solar energy using regional and global models.
Keywords
Topographic effect; high resolution; digital elevation model; solar energy; Seoul;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 CGIAR-CSI, 2012: SRTM 90m Digital Elevation Data [Available online at http://srtm.csi.cgiar.org/index.asp.].
2 Dozier, J., and J. Frew, 1990: Rapid calculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens., 28, 963-969.   DOI
3 Dubayah, R. C., 1994: Modelling a solar radiation topoclimatology for the Rio Grande River Basin. J. Veg. Sci., 5, 627-640.   DOI
4 Dubayah, R. C., and P. M. Rich, 1995: Topographic solar radiation models for GIS. Int. J. Geogr. Inf. Syst., 9, 405-419.   DOI
5 Fu, P., and P. M. Rich, 2000: The Solar Analyst 1.0 User Manual. Helios Environment Modeling Institute, 49 pp.
6 George, R. L., and E. L. Maxwell, 1999: High-resolution maps of solar collector performance using a climatological solar radiation model. Proc. of the 1999 Annual Conference, American Solar Energy Society, 243-248.
7 Hsia, Y. J., and W. Wang, 1985: Calculation of Potential Solar Irradiance on Slopes. Taiwan Forestry Research Institute, Research Note 001, 22 pp.
8 Jee, J. B., I. Zo, C. Lee, Y. Choi, K. Kim, and K. T. Lee, 2013a: Analysis of very high resolution solar energy based on solar-meteorological resources map with 1km spatial resolution. J. Korean Soc. New Renewable Energy, 9, 15-22, doi:10.7849/ksnre.2013.9.2.015 (in Korean with English abstract).   DOI
9 Jee, J. B., I. Zo, and K. T. Lee, 2013b: A study on the retrievals of downward solar radiation at the surface based on the observations from multiple geostationary satellites. Korean. J. Remote. Sens., 29, 123-135, doi:10.7780/kjrs.2013.29.1.12 (in Korean with English abstract).   DOI
10 Jee, J. B., W.-H. Lee, I.-S. Zo, and K.-T. Lee: 2011: Correction of one-layer solar radiation model by multi-layer line-by-line solar radiation model. Atmosphere, 21, 151-162 (in Korean with English abstract).
11 Jee, J. B., and Y.-J. Choi, 2014: Conjugation of landsat data for analysis of the land surface properties in capital area. J. Korean Earth Sci. Soc., 35, 54-68, doi:10.5467/JKESS.2014.35.1.54 (in Korean with English abstract).   DOI
12 Kondratyev, J., 1969: Radiation in the Atmospheric. Academic Press, USA, 916 pp.
13 Lee, S.-H., S.-W. Kim, W. M. Angevine, L. Bianco, S. A. McKeen, C. J. Senff, M. Trainer, S. C. Tucker, and R. J. Zamora, 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127-2143, doi:10.5194/acp-11-2127-2011.   DOI
14 Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model for meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73-102.
15 Lai, Y.-J., M.-D. Chou, and P.-H. Lin, 2009: Parameterization of topographic effect on surface solar radiation. J. Geophy. Res., 115, D01104, doi:10.1029/2009JD012305.   DOI
16 Rich, P. M., W. A. Hetrick, S. C. Saving, and R. O. Dubayah, 1994: Using viewshed models to calculate intercepted solar radiation: Applications in ecology. ASPRS Technical papers, 524-529.
17 Michael, K., U. Pilz, and E. Raschke, 1978: A modified two-stream approximation for computations of the solar radiation budget in a cloudy atmosphere. Tellus, 30, 429-435.
18 Park, S. H., J. B., Jee, and C. Y. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topographies and landuses over Seoul metropolitan areas. Atmosphere, 25, 323-336, doi:10.14191/Atmos.2015.25.2.309 (in Korean with English abstract).   DOI
19 Perez, R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, and F. Vignola, 2002: A new operational model for satellite-derived irradiances: Description and validation. Sol. Energy, 73, 307-317.   DOI
20 Rogelj, J., 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, Cambridge, 3-29.
21 Weymouth, G. T., and J. F. Le Marshall, 1999: An operational system to estimate global solar exposure over the Australian region from satellite observation. Australia Meteor. Mag., 48, 181-195.
22 Yi, C., S. M. An, K. R. Kim, H.-G. Kwon, and J.-S. Min, 2016: Surface micro-climate analysis based on urban morphological characteristics: Temperature deviation estimation and evaluation. Atmosphere, 26, 445-459, doi:10.14191/Atmos.2016.26.3.445 (in Korean with English abstract).   DOI
23 Yi, C., T. H. Kwon, M.-S. Park, Y. J. Choi, and S. M. An, 2015: A study on the roughness length spatial distribution in relation to the Seoul building morphology. Atmosphere, 25, 339-351, doi:10.14191/Atmos.2015.25.2.339 (in Korean with English abstract).   DOI
24 Zo, I.-S., J.-B. Jee, K.-T. Lee, and B.-Y. Kim, 2016: Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction. Asia-Pac. J. Atmos. Sci., 52, 405-412.   DOI
25 Zo, I.-S., J.-B. Jee, and K.-T. Lee, 2014: Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation of solar radiation distribution of the Korean peninsula. Asia-Pac. J. Atmos. Sci., 50, 575-584, doi:10.1007/s13143-014-0047-0.   DOI