• Title/Summary/Keyword: metasedimentary rocks

Search Result 74, Processing Time 0.021 seconds

Effect of geological characteristics on differential weathering of low-graded metasedimentary rock slopes (저변성퇴적암 사면에서 지질특성이 차별풍화에 미치는 영향)

  • Jeong, Hae-Geun;Seo, Yong-Seok;Ihm, Myung-Hyeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.375-385
    • /
    • 2013
  • This study evaluates correlation between petrographic characteristics and weathering grade of low-graded metasedimentary rocks mainly consisting of phyllite. Weathering grade of rock material was determined based on the results of geological survey. The Schmidt hammer test was carried out to obtain estimates of strength of rock materials. Point counting and microscopic observation were also conducted to analyze mineral composition and to measure spacing of foliation for 9 rock specimens. As a result of microscopic analysis, as the weathering grade was lower, the quartz was found more in quantity, consequently making rock stronger against weathering process. On the other side, lower weathering grade of rock resulted in less content of mica which is weak against weathering process. In addition, the rock materials with closer foliation spacing are found to be weaker in strength and have higher weathering grade.

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

PETROGEOCHEMISTRY OF THE GRANITIC ROCKS DISTRIBUTED IN IMGYE AND SAMHWA AREA, KANGWEON-DO (강원도 임계 및 삼화지역에 분포하는 화강암류에 대한 암석지구화학)

  • MIN, KYOUNG WON;KIM, SUNG BUM
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.33-48
    • /
    • 1990
  • The Imgye and the Samhwa granitoids distributed in the northeastern part of the Okchon Zone are known to be emplaced during the Mesozoic time. These granitoids intruded the Precambrian metasedimentary bedrocks and Cambro-ordovician sedimentary rocks. Petrographically the Samhwa granitoid is a biotite granite of mainly coars-grained texture with some fine-grained exceptions and the Imgye granitoid contains typically large phenocrysts of pinkish K-feldspars. Geochemical discriminators in terms of major elements suggest that the Samhwa and the Imgye granitoids are I-type and magnetite series. These granitoids are also classified as calc-alkalic rocks of subalkalic series. The Imgye and the Samhwa granitoids could have been evolved mainly by fractional crystallization and minimum partial melting respectively.

  • PDF

Geochemistry for the Serpentinites of the Igneous and Metamorphic Origins

  • Song, Suck-Hwan;Park, Seong-Gyu;Oh, Chang-Whan;Seo, Ji-Eun
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.196-197
    • /
    • 2003
  • Several masses of the alpine type ultramafic rocks are found within the Precambrian Kyeonggi gneiss complex, western part of Chungnam province. They occur as discontinuous isolated lenticular bodies along the fault line(NNE direction), dominant tectonic directions of Kyeonggi gneiss complex. The ultramafic rocks occur as fault contacts with the adjacent Precambrian metamorphic and metasedimentary rocks. (omitted)

  • PDF

Structural characteristics of the Yecheon Shear Zone in the Pukhumyeon-Pyeongeunmyeon area, Gyeongsangbukdo, Korea (경상북도 북후면-평은면 지역에 발달된 예천전단대의 구조적 특성)

SHRIMP U-Pb Ages of Detrital Zircons from Metasedimentary Rocks in the Yeongheung-Seonjae-Daebu Islands, Northwestern Gyeonggi Massif (경기육괴 북서부 영흥도-선재도-대부도에 분포하는 변성퇴적암 내 쇄설성 저어콘의 SHRIMP U-Pb 연대)

  • Na, Jun-Seok;Kim, Yoon-Sup;Cho, Moon-Sup;Yi, Kee-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.31-45
    • /
    • 2012
  • We investigated the various lithologies and zircon U-Pb ages of metasedimentary rocks from the Yeongheung-Seonjae-Daebu Islands, western Gyeonggi Massif, whose geologic and geochronologic features are poorly constrained in spite of their significance for tectonic interpretation. Major lithology consists of quartzites or meta-sandstones commonly alternating with semi-pelitic schists, together with lesser amounts of calcareous sandstones with matrix-supported quartzite clasts, calcareous schists, and pelitic schists. Pelitic schists uncommonly contain large porphyroblasts of garnet as well as quartz veins with large crystals of muscovite and andalusite or kyanite. SHRIMP U-Pb ages of detrital zircons from two analyzed metasandstones define four age populations: Neoarchean (~2.5 Ga), Paleoproterozoic (~2.0-1.5 Ga), Neoproterozoic (~1.1-0.7 Ga), and Early Paleozoic (~560-400 Ma). The youngest zircon ages are clustered at ~420 Ma. These results suggest that the deposition of meta-sandstones took place after the Silurian, possibly during the Devonian, and are analogous to those of the Taean Formation reported from the western part of the Gyeonggi Massif. Moreover, The age distribution patterns of detrital zircons and the Barrovian-type metamorphic facies of pelitic schists are similar to those reported from the Imjingang belt, suggesting that the Taean Formation likely corresponds to southwestward extension of the Imjingang Belt.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF

Geochemistry and K-Ar Age of Gabbroic Rocks in the Konamsan Area of Yonchon Province, South Korea (연천 고남산 지역에 분포하는 반려암질암의 암석화학과 관입시기)

  • Kim, Kyu Han;Lee, Hyun Joo
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.29-39
    • /
    • 1994
  • Gabbroic rocks in which titanomagnetite orebodies are embedded were emplaced in Precambrian metasedimentary rocks. Hornblende K-Ar ages for equigranula and gneissic gabbros were obtained to be $1021.8{\pm}14.5$ Ma and $1468.4{\pm}20.8$ Ma, respectively. Biotite-granite has an age of 116.4 Ma, which has corresponded to Daebo granite. Amphibole minerals of the gabbroic rock and the magnetite orebodies belong to calcic amphibole group such as ferroan pargasite, pargasite, and ferro-pargasite. The gabbroic rocks have unusually high content of $TiO_2$ ranging from 0.88 to 6.03 wt.% with an average value of 3.46 wt.% as compared to normal gabbroic rock with 1.32 wt.% in $TiO_2$. Incompatible elements such as Ba and Sr of the gabbros are negatively correlated with $SiO_2$. In contrast, Co and Cr have a positive correlation with $SiO_2$, suggesting a normal differentiation trend of gabbroic magma.

  • PDF

K-Ar Muscovite Dating for Precambrian Granites in the Sangdong Area (상동지역(上東地域) 선캠브리아 화강암류(花崗巖類)의 K-Ar 백운모(白雲母) 연령측정(年齡測定))

  • Yun, Hyun Soo
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.21-25
    • /
    • 1991
  • The studied Nonggeori and Naedeogri granites in the Sangdong area intruded into the Precambrian metasedimentary rocks of the Yulri Group. The Cambro-Ordovician Choseon Supergroup overlied unconformably upon the Yulri Group. Pegmatitic dykes injected into the Yulri Group and the granites, but not in the Choseon Supergroup. Field relationships suggest approximate ages of the intrusive rocks in the studied area belong to the Precambrian. Extremely pure concentrates of muscovites(40-80#) were obtained from the granites by conventional isodynamic magnetic separators. The contents of K and 40Ar in the muscovites show 8.60-8.78% and 98.52-99.11%, respectively. From the potassium contents of the muscovites and the approximate ages, the sample amounts for argon analyses are average of 0.00371gr. The K-Ar ages on the muscovites were revealed as Proterozoic ($1673{\pm}22{\sim}1802.5{\pm}17.5Ma$).

  • PDF