• Title/Summary/Keyword: metallocene

Search Result 84, Processing Time 0.021 seconds

Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene (실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향)

  • Lee, Jeong Suk;Lee, Chang Il;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2016
  • Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.

Preparation and Characterization of Metallocene-catalyzed Isotactic Polypropylene and/or Syndiotactic Polypropylene Single Crystals; Preliminary Studies

  • Park, Deuk-Kil;Park, Jin-Woo;Kim, Il;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.6 no.2
    • /
    • pp.1-5
    • /
    • 2005
  • Single crystals of metallocene-catalyzed isotactic polypropylene (iPP) and/or syndiotactic PP (sPP) were prepared and preliminarily characterized. The crystallization was performed utilizing 0.1 % by weight concentrations of each PP in o-xylene in the range of temperature of $40{\sim}90^{\circ}C$. Following the XRD patterns, samples were ${\alpha}$-iPP and antichiral Cell III of sPP. The XRD pattern of iPP shows three ${\alpha}$-form peaks due to the (110), (040), (130) planes at $2{\theta}=14.2^{\circ}$, $17^{\circ}$, $18.8^{\circ}$, respectively. The XRD pattern of sPP is characterized by the presence of the (020) reflection at $16^{\circ}$. The melting point ($123^{\circ}C$ and $148^{\circ}C$, respectively) of the metallocene catalyzed iPP and sPP were generally lower than that of conventional PP ($160{\sim}170^{\circ}C$) due to the misinsertion of the monomer. When metallocene-catalyzed iPP samples were crystallized isothermally from solution grown at a lower temperature, lozenge shape single crystals were observed by transmission electron microscopy (TEM).

  • PDF

Thermal Behavior and Physical Properties of Low Density Polyethylene/Metallocene Linear Low Density Polyethylene Blends (저밀도 폴리에틸렌/메탈로센 선형 저밀도 폴리에틸렌 블렌드의 열적 거동 및 물성)

  • Kim, Jang-Yup;Hyun, Uk;Lee, Dong-Ho;Noh, Seok-Kyun;Lee, Sang-Won;Huh, Wan-Soo
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.502-507
    • /
    • 2003
  • The thermal and physical properties of low density polyethylene melt-blended with Metallocene linear low density polyethylenes were investigated. Since the Metallocene polyethylenes have similar MW and MWD except m-LLDPE4, it can be said that the thermal behavior and mechanical properties of the blends depend upon the l-octene comonomer content. The melting behavior of LDPE/m-LLDPE1 blends shows two melting peaks with LDPE contents higher than 50%, while the other blends show only one melting peak. It was observed that the blends show higher crystallization temperature and higher crystallinity with lower comonomer content. Initial modulus of a blend exhibited the behavior proportional to the crystallinity and the elongation at break of the blends was increased with increasing the m-LLDPE composition. Melt indices of the blends decreased with increasing the comonomer content of Metallocene LLDPE. Melt Index values of the blends show negative deviation.

Copolymerizations of Ethylene with 1-Hexene over ansa-Metallocene Diamide Complexes

  • Kim, Il;Kwak, Chang-Hun;Son, Gi-Wan;Kim, Jae-Sung;Sinoj Abraham;Bijal K. B.;Ha, Chang-Sik;Kim, Bu-Ung;Jo, Nam-Ju
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.316-321
    • /
    • 2004
  • We have performed copolymerizations of ethylene with 1-hexene using various ansa-metallocene compounds in the presence of the non-coordinative [CPh$_3$][B(C$\_$6/F$\_$5/)$_4$ion pair as a cocatalyst. The metallocenes chosen for this study are isospecific metallocene diamide compounds, rac-(EBI)Zr(NMe$_2$)$_2$ [1, EBI = ethylene-l ,2-bis(1-indenyl)], rac-(EBI)Hf(NMe$_2$)$_2$ (2), rac-(EBI)Zr(NC$_4$H$\_$8/)$_2$ (3), and rac-(CH$_3$)$_3$Si(1-C$\_$5/H$_2$-2-CH$_3$-4-$\^$t/C$_4$H$\_$9/)2 Zr(NMe$_2$)$_2$ (4), and syndiospecific metallocene dimethyl compounds, ethylidene(cyclopentadienyl)(9-fluorenyl) ZrMe$_2$ [5, Et(Flu)(Cp )ZrMe$_2$] and isopropylidence (cyclopentadienyl)(9-fluorenyl)ZrMe$_2$ [6, iPr(Flu)(Cp)ZrMe$_2$]. The copolymerization rate decreased in the order 4 >1-3>2 >5>6. The reactivity of I -hexene decreased in the order 2 >6>1- 3-5> 4. We characterized the microstructure of the resulting poly(ethylene-co-l-hexene) by $\^$l3/C NMR spectroscopy and investigated various other properties of the copolymers in detail.

Polymerization of polyethylene wax using various metallocene catalysts (다양한 메탈로센 촉매를 이용한 폴리에틸렌 왁스의 중합)

  • Han, Ji-Woong;Lee, Yeong-Nam;Kim, Sung-Ho;Kim, In-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.857-865
    • /
    • 2017
  • This study was conducted to analyze and characterize the properties of polyethylene wax polymerized and polymerized using various metallocene catalysts based on Indene and Cyclopentadien, which are different from Ziegler-Natta catalysts used in polyethylene polymerizatio n. The polymerization of polyethylene wax was carried out under various conditions by adjusting the polymerization temperature and the ratio of hydrogen gas used as a chain transfer agent and ethylene gas to metallocene catalysts containing ligands of different structures. The molecular weight and molecular weight distribution, The catalyst yields were compared and analyzed. As a result, the structure of a metallocene catalyst suitable for having a low molecular weight and a narrow molecular weight distribution was proposed and the ideal polyethylene wax could be polymerized.

Preparation of Flexible Terpolymers using Various Metallocene Catalyst/Borate Cocatalyst System and their Epoxidation

  • Kim, Jung Soo;Choi, Jun;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.286-293
    • /
    • 2019
  • In this study, flexible poly(ethylene-ter-1-hexene-ter-divinylbenzene) was prepared using four types of metallocene catalysts (rac-Et(Ind)2ZrCl2, rac-SiMe2(Ind)2ZrCl2, rac-SiMe2(2-Me-Ind)2ZrCl2, (C5Me5)TiCl2[O-2,6-iPr2(C6H3)]) and two types of borate catalysts (trityl tetrakisborate and dimethylanilinium tetrakisborate). The yield, catalytic activity, molecular weight, structure, composition, and thermal properties of the terpolymers prepared using the various catalysts and cocatalyst systems were evaluated. Epoxidation of the terpolymers was successfully performed and this transformation was studied by 1H NMR and FTIR.

Electrical Properties Low-Density Polyethylene by use of Metallocene Catalyst (메타로센 촉매를 이용한 저밀도 폴리에틸렌의 전기적 특성)

  • ;Tatsuo Mori;Teruyoshi Mizutani
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.123-127
    • /
    • 2000
  • In order to investigate the influence of manufacturing process on the electrical properties, we used two kinds of low density polyethylene prepared using metallocene catalyst (mL), linear low density polyethylene prepared using Ziegler catalyst (LL) and low density polyethylene by high pressure process (LD). mL has the narrowest composition and molecular weight distributions. We measured the dc and impulse breakdown strengths and current densities at 3$0^{\circ}C$, 6$0^{\circ}C$ and 9$0^{\circ}C$. mL had a higher breakdown strength and a lower high-field current than LD and LL. These results were discussed from the point of manufacturing processes.

  • PDF

Theoretical Models of Ethylene Polymerization

  • 장만채
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1269-1276
    • /
    • 1999
  • Metallocenes, whether using a cocatalyst or not, act as catalysts in ethylene polymerization. The positive charge on the transition metal of a metallocene might have an important role in polymerization as an active site in our model approach. Using semiempirical calculations in the absence of cocatalyst, we show one of the possibilities that the positive charge on a metallocene might be more easily transferred through the Cp ring of a ligand to the ethylene than to transfer directly from the transition metal to the ethylene. In these calculations, the charge on titanium in an eight C2H4 system is transferred and a polymer chain is produced. This reaction takes place only when ethylenes are arranged in a particular direction with respect to the ring, but does not take place for ethylenes near Ti or Cl atoms. The same mechanism is shown for a metallocene ligand which is sterically hindered or where the Cp ring is replaced by fluorenyl. These results suggest an entirely new polymerization mechanism in the absence of a cocatalyst in which the Cp ring is the active site.

Modification of Poly(methylsilene) Catalyzed by Group 4 and 6 Transition Metal Complexes and Its Pyrolysis

  • 양수연;박종목;우희권;김환기;김동표;황택성
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1264-1268
    • /
    • 1997
  • The poly(methylsilene) (1) was modified with the group 4 metallocene Cp2MCl2/Red-Al (M = Ti, Zr, Hf) combination catalyst and with the group 6 metal carbonyl M(CO)6 (M = Cr, Mo, W) catalyst, producing the highly cross-linked isoluble polymer and the lowly cross-linked soluble polymer, respectively. An interrelationship between molecular weight and percent ceramic residue yield with metal within the respective group was not found. The polymers modified with the group 4 metallocene combination catalysts have higher molecular weight and lower percent ceramic residue yield than the polymers modified with the group 6 metal carbonyl catalysts do. The catalytic activity of group 4 metallocene combinations appears to be higher at ∼100 ℃, but to be lower at very high temperature than those of group 6 metal carbonyls. The pyrolysis of the modified 1 yielded SiC ceramic.