• Title/Summary/Keyword: metallization

Search Result 341, Processing Time 0.095 seconds

Characteristics research of Cu-doped Programmable Metallization Cell (Cu를 도핑시킨 Programmable Metallization Cell의 특성연구)

  • Nam, Ki-Hyun;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1289-1290
    • /
    • 2008
  • Programmable Metallization Cell (PMC) is a memory device based on the electrolytical characteristic of chalcogenide materials. In this study, we investigate the nature of thin films formed by photo doping of Cu ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using copper which play an electrolyte ions role. The results imply that a Cu-rich phase separates owing to the reaction of Cu with free atoms from chalcogenide materials.

  • PDF

Influence of the Metallization During the Manufacturing of the Ceramic Capacitor on the Dielectric Properties (콘덴사 제어에 있어서 금속화과정이 유도특성에 미치는 영향)

  • Ho-Gi Kim
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.2
    • /
    • pp.83-87
    • /
    • 1984
  • Influence of the metallization during the manufacturing of the ceramic multilayer capacitor on the dielectric properties was studied as a change of the capacity and the dissipation factor. Due to the change of the relative dielectric constant as a function of the measuring temperature the influence of the metallization could be obtained and the change of the dissipation factor as a function of the measuring frequency was anaysed. In order to investigate the boundary effect between the metallization and the dielectric a kind of microstructure model at the internal Grain and Grain Boundary was constructed and tried to analyse the change of the dielectric properties.

  • PDF

Properties on Annealing of Chalcogenide Materials at Programmable Metallization Cell (Programmable Metallization Cell에서 칼코게나이드 물질의 열처리에 따른 특성)

  • Choi, Hyuk;Kim, Hyun-Gu;Nam, Ki-Hyun;Ju, Long-Yun;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.164-164
    • /
    • 2007
  • Photodiffusion of silver into chalcogenide thin film is one of the most interesting effects that occurs in chalcogenide glass as it theatrically changes the properties of the initial material and forms a ternary. Programmable Metallization Cell(PMC) Randon Access Memory use for photodiffusion of mobile metal is based on the electrochemical growth and removal of nanoscale metallic pathway in thin film of solid electrolyte. This paper investigates the annling properties on Ag-doped $Ge_{25}Se_{75}$ thin film structure and describes the electrical characteristics of PMC-RAM. The composition of the intercalation products containing Ag is confirmed using X-ray diffraction which shows the formation of Ag-doped $Ge_{25}Se_{75}$.

  • PDF

Metallization and superconductivity of hydrides under high pressure

  • Kim, Duck Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.1-4
    • /
    • 2021
  • Hydrogen, the lightest and the most abundant element in the universe becomes a mainstay of contemporary condensed matter physics, which is largely because its metallization is regarded as the holy grail of high-pressure physics and it is also due to recent observations of high Tc superconductivity in hydrogen-dense compounds at extremely high pressure. Contemporary static high-pressure technique is not enough to realize the metallization of solid hydrogen and hydrogen-dense compounds may significantly reduce the required transition pressure providing an excellent proxy study. In this brief review, I will introduce recent achievements of high-pressure study in solid hydrogen and hydrides.

Electroless plating of buried contact solar cell (전극함몰형 태양전지의 무전해도금)

  • Dong Seop Kim;Eun Chel Cho;Soo Hong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • The metallization is the key to determining cell costs, cell performance, and system reliability. Screen printing technology suffers from several limitations affecting mainly the front grid. The buried contact solar cell (BCSC) was specifically desinged to be compatible with low cost, mass production techniques and avoid the conventional metallization problem. By using electroless plating technique, we performed this metallization inexpensively and reliably. This paper presents the details of the optimization procedure of metallization schemes on laser grooved cell surfaces. Commercially available Ni, Cu and Ag plating solutions were applied for the cell metallization. The application of those solutions on the buried contact front metallization has resulted in an cell efficiency of 18.8%. The cell parameters are an open circuit voltage of 651 mV, short circuit current density of 37.1 mA/$\textrm{cm}^2$, and fill factor of 77.8 %. The efficiency of over 18 % was achieved in the above 90% of the batch.

  • PDF

Evaluation of the Residual Stress with respect to Supporting Type of Multi-layer Thin Film for the Metallization of Pressure Sensor (압력센서의 배선을 위한 다층 박막의 지지조건 변화에 따른 잔류응력 평가)

  • 심재준;한근조;김태형;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1537-1540
    • /
    • 2003
  • MEMS technology with micro scale is complete system utilized as the sensor. micro electro device. The metallization of MEMS is very important to transfer the power operating the sensor and signal induced from sensor part. But in the MEMS structures local stress concentration and deformation is often happened by geometrical shape and different constraint on the metallization. Therefore. this paper studies the effect of supporting type and thickness ratio about thin film thickness of the substrate thickness for the residual stress variation caused by thermal load in the multi-layer thin film. Specimens were made from materials such as Al, Au and Cu and uniform thermal load was applied, repeatedly. The residual stress was measured by FEA and nano-indentation using AFM. Generally, the specimen made of Al induced the large residual stress and the 1st layer made of Al reduced the residual stress about half percent than 2nd layer. Specimen made of Cu and Au being the lower thermal expansion coefficient induce the minimum residual stress. Similarly the lowest indentation length was measured in the Au_Cu specimen by nano-indentation.

  • PDF

Properties on Electrical Resistance Change of Ag-doped Chalcogenide Thin Films Application for Programmable Metallization Cell (Programmable Metallization Cell 응용을 위한 Ag-doped 칼코게나이드 박막의 전기적 저항 변화 특성)

  • Choi, Hyuk;Koo, Sang-Mo;Cho, Won-Ju;Lee, Young-Hie;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1022-1026
    • /
    • 2007
  • We have demonstrated new functionalities of Ag doped chalcogenide glasses based on their capabilities as solid electrolytes. Formation of such amorphous systems by the introduction of silver via photo-induced diffusion in thin chalcogenide films is considered. The influence of silver on the properties of the newly formed materials is regarded in terms of diffusion kinetics and Ag saturation is related to the composition of the hosting material. Silver saturated chalcogenide glasses have been used in the formation of solid electrolyte which is the active medium in programmable metallization cell (PMC) devices. In this paper, we investigated electrical and optical properties of Ag-doped chalcogenide thin film on changed thickness of Ag and chalcogenide thin films, which is concerned at Ag-doping effect of PMC cell. As a result, when thickness of Ag and chalcogenide thin film was 30 nm and 50 nm respectively, device have excellent characteristics.