Browse > Article
http://dx.doi.org/10.9714/psac.2021.23.3.001

Metallization and superconductivity of hydrides under high pressure  

Kim, Duck Young (Center for High Pressure Science and Technology Advanced Research)
Publication Information
Progress in Superconductivity and Cryogenics / v.23, no.3, 2021 , pp. 1-4 More about this Journal
Abstract
Hydrogen, the lightest and the most abundant element in the universe becomes a mainstay of contemporary condensed matter physics, which is largely because its metallization is regarded as the holy grail of high-pressure physics and it is also due to recent observations of high Tc superconductivity in hydrogen-dense compounds at extremely high pressure. Contemporary static high-pressure technique is not enough to realize the metallization of solid hydrogen and hydrogen-dense compounds may significantly reduce the required transition pressure providing an excellent proxy study. In this brief review, I will introduce recent achievements of high-pressure study in solid hydrogen and hydrides.
Keywords
hydrogen; hydride; pressure; metallization; superconductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Jeanloz, "Physical Chemistry at ultrahigh pressures and temperatures," Annu. Rev. Phys. Chem., vol. 40, pp. 237-259, 1989.   DOI
2 X.-D. Liu, et al., "Comment on observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 357, pp. eaan2286, 2017.   DOI
3 M. I. Eremets and A. P. Drozdov, "Comment on: observation of the Wigner-Huntington transition to metallic hydrogen," arXiv:1702.05125, 2017.
4 C. F. Richardson and N. W. Ashcroft, "High temperature superconductivity in metallic hydrogen:electron-electron enhancement," Phys. Rev. Lett., vol. 78, pp. 118-121, 1997.   DOI
5 C. J. Pickard and R. J. Needs, "Structure of phase III of solid hydrogen," Nat. Phys., vol. 3, pp. 473-476, 2007.   DOI
6 C. B. Satterthwaite and I. L. Toepke, "Superconductivity of hydrides and deuterides of thorium," Phys. Rev. Lett., vol. 25, pp. 741, 1970.   DOI
7 T. Skoskiewicz, "Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems," Phys. Status Solidi (a), vol. 11, pp. K123, 1972.   DOI
8 X. Chen, et al., "Pressure-induced metallization of silane," PNAS, vol. 105, pp. 20-23, 2008.   DOI
9 C. J. Pickard and R. J. Needs, "High-pressure phases of silane," Phys. Rev. Lett., vol. 97, pp. 045504, 2006.   DOI
10 D. Y. Kim, R. H. Scheicher, H.-k. Mao, T. W. Kang, and R. Ahuja, "General trend for pressurized superconducting hydrogen-dense materials," PNAS, vol. 107, pp. 2793-2796, 2010.   DOI
11 R. Golser, et al., "Experimental and theoretical evidence for long-lived molecular hydrogen anions H2- and D2-," Phys. Rev. Lett., vol. 94, pp. 223003, 2005.   DOI
12 M. Somayazulu, et al., "Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures," Phys. Rev. Lett., vol. 122, pp. 027001, 2019.   DOI
13 J. Binns, et al., "Complex hydrogen substructure in semimetallic RuH4," J. Phys. Chem. Lett., vol. 11, no. 9, pp. 3390-3395, 2020.   DOI
14 M. I. Eremets, I. A. Trojan, S. A. Medvedev, J. S. Tse, and Y. Yao, "Superconductivity in hydrogen dominant materials: Silane," Science, vol. 14, pp. 1506-1509, 2008.
15 D. Y. Kim, R. H. Scheicher, C. J. Pickard, R. J. Needs, and R. Ahuja, "Predicted formation of superconducting platinum-hydride crystals under pressure in the presence of molecular hydrogen," Phys. Rev. Lett., vol. 107, pp. 117002, 2011.   DOI
16 S. Minomura, "Pressure-induced transitions in amorphous silicon and germanium," Journal de physique, colloque C4, supplement au 10, Tome 42, C4-181, 1981.
17 B. Li, Y. Ding, D. Y. Kim, R. Ahuja, G. Zou, and H.-k. Mao, "Rhodium dihydride (RhH2) with high volumetric hydrogen density," PNAS, vol. 108, pp. 18618-18621, 2011.   DOI
18 M. Somayazulu, P. Dera, A. F. Goncharov, S. A. Gramsch, P. Liermann, W. Yang, Z. Liu, H.-k. Mao, and R. J. Hemley, "Pressure-induced bonding and compound formation in xenon-hydrogen solids," Nature Chemistry, vol. 2, pp. 50-53, 2010.   DOI
19 T. Muramatsu, et al., "Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9," J. Phys. Chem. C, vol. 119, no. 32, pp. 18007-18013, 2015.   DOI
20 A. P. Drozdov, et al., "Superconductivity at 250 K in lanthanum hydride under high pressures," Nature, vol. 569, pp. 528-531, 2019.   DOI
21 H. Liu, I. I. Naumov, R. Hoffmann, N. W. Ashcroft, and R. J. Hemley, "Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure," PNAS, vol. 114 (27), pp. 6990-6995, 2017.   DOI
22 E. Snider, et al., "Room-temperature superconductivity in a carbonaceous sulfur hydride," Nature, vol. 586, pp. 373-377, 2020.   DOI
23 M. Dogan and M. L. Cohen, "Anomalous behavior in high-pressure carbonaceous sulfur hydride," Physica C: Superconductivity and its applications, vol. 583, pp. 1353851, 2021.   DOI
24 Hubert Gnaser and R. Golser, "Vertification of long-lived molecular hydrogen anions (Hn-, Dn-, n=2,3) by seconadary-ion mass spectrometry," Phys. Rev. A, vol. 73, pp. 021202(R), 2006.   DOI
25 V. Struzhkin, B. Li, X.-J. Chen, V. Prakapenka, E. Greenberg, I. Troyan, A. Gavriliuk, and H.-k. Mao, "Superconductivity in La and Y hydrides: Remaining questions to experiment and theory," Matter Radiat. Extremes, vol. 5, pp. 028201, 2020.   DOI
26 T. A. Strobel, M. Somayazulu, and R. J. Hemley, "Novel pressure-induced interactions in silane-hydrogen," Phys. Rev. Lett., vol. 103, pp. 065701, 2009.   DOI
27 A. F. Goncharov and V. V. Struzhkin, "Comment on observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 357, pp. eaam9736, 2017.   DOI
28 S. Lebegue, et al., "Semimetallic dense hydrogen above 260 GPa," PNAS June 19, vol. 109(25), pp. 9766-9769, 2012.   DOI
29 J. E. Hirsch and F. Marsiglio, "Unusual width of the superconducting transition in a hydride," Nature, vol. 596, pp. E9-E10, 2021.   DOI
30 P. Loubeyre, et al., "Comment on: observation of the Wigner-Huntington transition to metallic hydrogen," arXiv:1702.07192, 2017.
31 N. W. Ashcroft, "Hydrogen dominant metallic alloys: High temperature superconductors?," Phys. Rev. Lett., vol. 92, pp. 187002, 2004.   DOI
32 P. Clark Souers, "Hydrogen properties for fusion energy," University of California Press, pp. 241-269, 1986.
33 E. Wigner and H. B. Huntington, "On the possibility of a metallic modification of hydrogen," J. Chem. Phys., vol. 3, pp. 764-770, 1935.   DOI
34 K. Inoue, H. Kanzaki, and S. Suga, "Fundamental absoption spectra of solid hydrogen," Solid St. Commun., vol. 30, pp. 627, 1979.   DOI
35 R. P. Dias and I. F. Silvera, "Observation of the Wigner-Huntington transition to metallic hydrogen," Science, vol. 355, pp. 715-718, 2017.   DOI
36 J. M. McMahon and D. M. Ceperley, "High-temperature superconductivity in atomic metallic hydrogen," Phys. Rev. B, vol. 84, pp. 144515, 2011.   DOI
37 J. N. Huiberts, R. Griessen, J. H. Rector, R. J. Wijngaarden, J. P. Dekker, D. G. de Groot, and N. J. Koeman, Nature, vol. 380, pp. 231-234, 1996.   DOI
38 M. Hanfland, J. E. Proctor, C. L. Guillaume, O. Degtyareva, and E. Gregoryanz, "High-pressure synthesis, amorphization, and decomposition of silane," Phys. Rev. Lett., vol. 106, pp. 095503, 2011.   DOI
39 V. V. Struzhkin, et al., "Synthesis of sodium polyhydrides at high pressures," Nature commun., vol. 7, pp. 12267, 2016.   DOI
40 T. Matsuoka, M. Hishida, K. Kuno, N. Hirao, Y. Ohishi, S. Sakaki, K. Takahama, and K. Shimizu, Phys. Rev. B, vol. 99, pp. 144511, 2019.   DOI
41 A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin, "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system," Nature, vol. 525, pp. 73-76, 2015.   DOI
42 E. Gregoryanz, C. Ji, P. Dalladay-Simpson, B. Li, R. T. Howie, and H.-k. Mao, "Everything you always wanted to know about metallic hydrogen but were afraid to ask," Matter Radiat. Extremes, vol. 5, pp. 038101, 2020.   DOI
43 Y. Li, J. Hao, H. Liu, Y. Li, and Y. Ma, "The metallization and superconductivity of dense hydrogen sulfide," J. Chem. Phys., vol. 140, pp. 174712, 2014.   DOI
44 Y. Xia, B. Yang, F. Jin, Y. Ma, X. Liu, and M. Zhao, "Hydrogen confined in a single wall carbon nanotube becomes a metallic and superconductive nanowire under high pressure," nano lett., vol. 19, pp. 2537-2542, 2019.   DOI
45 W. Grochala, R. Hoffmann, J. Feng, and N. W. Ashcroft, "The chemical imagination at work in very tigh places," Angew. Chemie, vol. 46, no. 20, pp. 3620-3642, 2007.   DOI
46 M. Motta, et al., "Ground-state properties of the hydrogen chain: dimerization, insulator-to-metal transition, and magnetic phases," Phys. Rev. X, vol. 10, pp. 031058, 2020.   DOI
47 I. Langmuir, "The dissociation of hydrogen into atoms," J. Am. Chem. Soc., vol. 34, no. 7, pp. 860-877, 1912.   DOI
48 B. Li, et al., "Probing the electronic band gap of solid hydrogen by inelastic X-ray scattering up to 90 GPa," Phys. Rev. Lett., vol. 126 pp. 036402, 2021.   DOI
49 S. K. Sharma, H-k. Mao, and P. M. Bell, "Raman measurements of hydrogen in the pressure range 0.2-630 kbar at room temperature," Phys. Rev. Lett., vol. 44, pp. 886, 1980.   DOI