• Title/Summary/Keyword: metallic surface

Search Result 865, Processing Time 0.035 seconds

Ionic-to-Metallic Layer Transition in Cs Adsorption on Si(111)-(7$\times$7). Charge-State Selective Detection of Adsorbate by Cs+ Reactive Ion Scattering.

  • Han, Seung-Jin;Park, Sung-Chan;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.155-155
    • /
    • 2000
  • Adsorption of alkali metals on a silicon surface has attracted much attention due to its importance in metal-semiconductor interface technology, In particular, the bonding nature of alkali metal to silicon substrate has been a focus of fundamental research efforts. We examined the adsorbed layer of Cs on a Si(111)-(7$\times$) surface by reactive ion scattering (RIS) of hyperthermal Cs+ beams. RIS from a Cs-adsorbed surface gives rise to Cs, representing pickup of surface Cs by Cs projectile. The Cs intensity is proportional to surface coverage of Cs at a high substrate temperature (473 K), while it varies anomalously with Cs coverage at low temperatures (130-170 K). This observation indicates that RIS selectively detects metallic Cs on surface, but discriminates ionic Cs. Transition from ionic to metallic Cs adlayer is driven by thermal diffusion of Cs and their clustering process.

  • PDF

Assessment of the Pollution Levels of Organic Matter and Metallic Elements in the Intertidal Surface Sediments of Aphae Island (압해도 조간대 표층퇴적물의 유기물 및 금속원소 오염도 평가)

  • Hwang, Dong-Woon;Park, Sung-Eun;Kim, Pyoung-Jung;Koh, Byoung-Seol;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.6
    • /
    • pp.759-771
    • /
    • 2011
  • We evaluated the pollution levels of organic matter and metallic element (Fe, Cu, Pb, Zn, Cd, Ni, Cr, Mn, As, and Hg) in the intertidal surface sediments of Aphae Island using several sediment quality guidelines (SQGs) and assessment techniques for sediment pollution. Based on the textural composition of sediment, the surface sediments were classified into two main sedimentary facies: slightly gravelly mud and silt. The concentrations of chemical oxygen demand (COD) and acid volatile sulfide (AVS) in the sediments ranged from 4.6-9.9 (mean $7.4{\pm}1.1$) $mgO_2/g{\cdot}dry$ and from ND-0.53 (mean $0.04{\pm}0.10$) mgS/$g{\cdot}dry$, respectively. These values were considerably lower than those reported from a farming area in a semi-enclosed bay of Korea and for SQGs in Japan. The metallic element concentrations in the sediments varied widely with the mean grain size and organic matter content, implying that the concentrations of metallic elements are influenced mainly by secondary factors, such as bioturbation, the resuspension of sediment, and anthropogenic input. The overall results for the comparison with SQGs, enrichment factor (EF), and geoaccumulation index ($I_{geo}$) indicate that the surface sediments are slightly polluted by Cr and Ni, and moderately polluted by As. Our results suggest that the intertidal surface sediments of Aphae Island are not polluted by organic matter or metallic elements and the benthic conditions are suitable for healthy organisms.

Welding Parameters Optimization of Pleated Type Metallic Filter Using response surface methodology (반응표면 분석법을 이용한 Pleated Type Filter의 용접조건 최적화에 관한 연구)

  • 박형진;강문진;최병구;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.39-41
    • /
    • 2004
  • This study is to optimize the condition of pulse parameters using the response surface method in micro pulse TIG welding of pleated type metallic filter. The input parameters used were pulse current, base current, pulse duty, frequency and welding speed and the hydraulic pressure was used as the output parameter. The central composite design was designed using second order regression model, As the results, the optimal welding condition to manufacture the pleated type metallic filter was obtained.

  • PDF

The Effect of Trace Metallic Additives on Microstructure, Surface Appearance and Hardness of Zn Electrodeposits (아연도금층의 조직, 외관, 및 경도에 미치는 미량 금속첨가의 영향)

  • 예길촌;김대영;안덕수
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.1
    • /
    • pp.28-39
    • /
    • 2004
  • The effect of trace metallic additives on microstructure, surface appearance and hardness of zinc electrodeposits was investigated by using sulfate bath and flow cell system. The preferred orientation of Zn deposit with Fe additive was (103)(104)+(002) mixed texture and that of Zn deposits with both Fe-Ni and Fe-Co additives was (10 1), while Zn deposits with Fe-Cr additives had (002) preferred orientation. The surface morphology of the zinc deposits was closely related to the preferred orientation of the deposits. The glossiness of Zn deposit with Fe-Ni additives was higher than that of pure Zn deposit, while the glossiness of Zn deposits with both Fe-Co and Fe-Cr additives was lower than that of pure Zn deposit. The hardness of Zn deposits with both Fe-Ni and Fe-Co additives was noticeably higher than that of Zn-Fe deposit, while that of Zn deposit with Fe-Cr additives was similar to that of Zn-Fe deposit.

A Composite of Metal and Polymer Films: Thin Nickel Film Coated on a Polypropylene Film after Atmospheric Plasma Induced Surface Modification

  • Song, Ho-Shik;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.110-114
    • /
    • 2011
  • Polymeric films of high chemical stability and mechanical strength covered with a thin metallic film have been extensively used in various fields as electric and electronic materials. In this study, we have chosen polypropylene (PP) as the polymer due to its outstanding chemical resistance and good creep resistance. We coated thin nickel film on PP films by the electroless plating process. The surfaces of PP films were pre-treated and modified to increase the adhesion strength of metal layer on PP films, prior to the plating process, by an environment-friendly process with atmospheric plasma generated using dielectric barrier discharges in air. The surface morphologies of the PP films were observed before and after the surface modification process using a scanning electron microscope (SEM). The static contact angles were measured with deionized water droplets. The cross-sectional images of the PP films coated with thin metal film were taken with SEM to see the combined state between metallic and PP films. The adhesion strength of the metallic thin films on the PP films was confirmed by the thermal shock test and the cross-cutting and peel test. In conclusion, we made a composite material of metallic and polymeric films of high adhesion strength.

Effect of Metallic Particles on E-field Enhancement in Extra High Voltage Gas-insulated Transmission Lines

  • Rao, M. Mohana;Satyanarayana, S.;Kumar, S. Vinay;Jain, H.S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.631-636
    • /
    • 2010
  • Gas-insulated transmission lines (GITL) are valued as technological solutions in hydro-power stations due to their enormous power handling capabilities. The performance of GITL is a function of the size of metallic particles inside the gas-insulated chamber. Electrostatic field (E-field) enhancement is a common phenomenon in gas-insulated lines due to these metallic particles. In this study, the E-field enhancement factor is calculated by considering metallic particles at various locations in the gas-insulated line/bus section, such as high-tension (HT) conductor, high-voltage shields, support insulator, and inner surface of grounded enclosure. For this purpose, a two-dimensional model based on finite element (FE) method is developed. The length of the metallic particle is in the range of 1 to 10 mm while the diameter is between 1 to 3 mm. E-field enhancement is also computed for various particle configurations of the gas-insulated system, with focus on dielectric coating made of epoxy on HT conductor and inner surface of grounded enclosure.

Control of Surface Energy using Bilayer Metallic Film Heterostructures

  • Kim, Chang-Lae;Kim, Dae-Eun;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.350-355
    • /
    • 2019
  • Surface energy is an important factor in determining the performance of application components in terms of preventing adhesion failure between thin films. In this regard, numerous attempts have been made to acquire the desired surface energy through chemical treatment or by using micro/nanostructures. However, such approaches are expected to provide extreme values of surface energy, which may not be suitable in achieving the enhanced performance of applications. In this study, we propose a method to control surface energy by using bilayer metallic film heterostructures. We measure the water contact angle of incompatible (Ni/Ag) and compatible (Zn/Ag) metal pairs under several experimental factors, including thickness, time, and temperature. Furthermore, we conduct Auger electron spectroscopy measurements to investigate the atomic concentration with respect to depth after the change in the water contact angle. The experimental results reveal that three parameters, namely, compatibility, film thickness, and environmental temperature, are major factors in controlling the water contact angle. Thus, we experimentally demonstrate that controlling these three parameters can provide the approximate desired water contact angle. This result is expected to aid in the performance enhancement of a wide range of application components, where control of surface energy is required.

Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc.

  • Valbuena-Nino, E.D.;Gil, L.;Hernandez, L.;Sanabria, F.
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The hybrid method of three-dimensional ion implantation and electric arc is presented as a novel plasma-ion technique that allows by means of high voltage pulsed and electric arc discharges, the bombardment of non-metallic and metallic ions then implanting upon the surface of a solid surface, especially out of metallic nature. In this study AISI/SAE 4140 samples, a tool type steel broadly used in the industry due to its acceptable physicochemical properties, were metallographically prepared then surface modified by implanting titanium and simultaneously titanium and nitrogen particles during 5 min and 10 min. The effect of the ion implantation technique over the substrate surface was analysed by characterization and electrochemical techniques. From the results, the formation of Ti micro-droplets upon the surface after the implantation treatment were observed by micrographs obtained by scanning electron microscopy. The presence of doping particles on the implanted substrates were detected by elemental analysis. The linear polarization resistance, potentiodynamic polarization and total porosity analysis demonstrated that the samples whose implantation treatment with Ti ions for 10 min, offer a better protection against the corrosion compared with non-implanted substrates and implanted at the different conditions in this study.

Fabrication of metallic nano-stamper to replicate nanoscale patterns (나노패턴 성형을 위한 금속 나노 스탬퍼 제작)

  • 김영규;이동철;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.481-484
    • /
    • 2003
  • In this study, we fabricated the master metallic nano-stamper with nano pillar patterns to apply replication processes which is adequate for mass production. Master nano patterns with various hole diameters between 300 nm and 1000 nm was fabricated by e-beam lithography. After the seed layer was deposited on the master nano patterns using e-beam evaporation, the nickel was electroformed. In each step, the shape and surface roughness of their patterns were analyzed using SEM and AFM.

  • PDF