• Title/Summary/Keyword: metallic oxide

Search Result 327, Processing Time 0.026 seconds

Flow behavior characteristics according to superficial gas velocity of NiO/MoO3/MoS2 (NiO/MoO3/MoS2의 공탑속도에 따른 유동화 특성)

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Lee, Kwan-Young;Kim, Kwang-Deuk;Park, Young-Ok
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2017
  • This study identified the loss of minimum fluidization velocity and pressure in accordance with the superficial velocity of $NiO/MoO_3/MoS_2$, a rare metallic oxide and high value-added material in the lab-scale fluidized bed reactor (L=0.25 m, D=0.05 m). The average pressure loss in L/D 1, 2, and 3 of $NiO/MoO_3/MoS_2$ within the scope of superficial gas velocity between 0.07 and 0.45 m/s based on the L/D 1, 2, and 3 of the specimen was shown to be 290~1952 Pa at decreasing flux and 253~1925 Pa at increasing flux. The comparison between the theoretical value proposed by Wen and the test data showed a difference between 0.021~0.36 magnification. Based on these results, this study was able to determine the operation conditions where rare metallic oxides could be applied in real phenomena.

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

A Study on the Characteristics of Electro Polishing and Utility Materials for Transit High Purity Gas (청정도 가스 이송용 재료의 특성과 전해연마에 관한 연구)

  • Lee, Jong-Hyung;Park, Shin-Kyu;Yang, Seong-Hyeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • In the manufacture progress of LCD or semiconductor, there are used many kinds of gas like erosion gas, dilution gas, toxic gas as a progress which used these gas there are required high puritize to increase accumulation rate of semiconductor or LCD materials work progress of semiconductor or LCD it demand many things like the material which could minimize metallic dust that could be occured by reaction between gas and transfer pipe laying material, illumination of the surface, emition of the gas, metal liquation, welding etc also demand quality geting stricted. Material-Low-sulfur-contend (0.007-0010), vacuum-arc-remelt(VAR), seamless, high-purity tubing material is recommend for enhance welding lower surface defect density All wetted stainless steel surface must be 316LSS elecrto polishinged with ${\leq}0.254{\mu}m$($10.0{\mu}in$) Ra average surface finish, $Cr/Fe{\geq}1.1$ and $Cr_2O_3$ thickness ${\geq}25{\AA}$ From the AES analytical the oxide layer thickness (23.5~36 angstroms silicon dioxide equivalent) and chromum to iron ratios is similar to those generally found on electropolished stainless steel., molybdenum and silicon contaminants ; elements characteristic of stainless steel (iron, nickel and chromium); and oxygen were found on the surface Phosphorus and nitrogen are common contaminants from the electropolish and passivation steps.

  • PDF

Characterization and Electrical Conductivity of Carbon-Coated Metallic (Ni, Cu, Sn) Nanocapsules

  • Wang, Dong Xing;Shah, Asif;Zhou, Lei;Zhang, Xue Feng;Liu, Chun Jing;Huang, Hao;Dong, Xing Long
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.236-241
    • /
    • 2015
  • Carbon-coated Ni, Cu and Sn nanocapsules were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and a four-point probe device. All of these nanocapsules were prepared by an arc-discharge method, in which the bulk metals were evaporated under methane ($CH_4$) atmosphere. Three pure metals (Ni, Cu, Sn) were typically diverse in formation of the carbon encapsulated nanoparticles and their different mechanisms were investigated. It was indicated that a thick carbon layers formed on the surface of Ni(C) nanocapsules, whereas a thin shell of carbon with 1~2 layers covered on Cu(C) nanocapsules, and the Sn(C) nanocapsules was, in fact, a longger multi-walled carbon nanotubes partially-filled with metal Sn. As one typical magnetic/dielectric nanocomposite particles, Ni(C) nanocapsules and its counterpart of oxide-coated Ni(O) nanocapsules were compared in the electrically conductive behaviors for further applications as the electromagnetic materials.

Investigation of NH4OH on Zircaloy-4 Surfaces Using Electron Emission Spectroscopy

  • Jung, Hye-Yoon;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1751-1755
    • /
    • 2007
  • The interaction of ammonium hydroxide (NH4OH) with zircaloy-4 (Zry-4) was investigated using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) methods. In order to study the surface chemistry of NH4OH/Zry-4 system, the binding energies of N1s, O1s and Zr3d electrons were monitored. The N1s peak intensity was remarkably increased by following cycles of Ar+ sputtering of NH4OH dosed Zry-4 surface at room temperature. Because the nitrogen stayed under the subsurface region was diffused out onto the Zry-4 surface after oxygen concentration was decreased. These could be occurred after the surface oxygen was diffused into the bulk or desorbed out from the surface until Ar+ fluence was 6.0 × 1016 Ar+/cm2 then the surface was relatively atomic deficient state. The O1s peak intensity was decreased by stepwise Ar+ sputtering. After many cycles of Ar+ sputtering, the peak intensities of Zr3d peaks did not change much but the shape of the peak clearly did change. This implies that the oxidation state of zirconium was changed during stepwise Ar+ sputtering of NH4OH/Zry-4. The Zr3d peak intensity of zirconium nitride (ZrNx) increased as the intensity of N1s (from zirconium nitride) increased but the Zr3d peak intensity of zirconium oxide (ZrOx) decreased due to the depopulation of the oxygen species on the surface region. We also observed that the peak intensity of Zr4+ was nearly same after Ar+ sputtering processes but the peak intensity of metallic zirconium increased compared to that of before the sputtering process was performed.

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

A Case of Metal Fume Fever Associated with Copper Fume in a Welder (용접공에서 발생한 구리흄에 의한 금속열 1례)

  • Lim, Hyun-Sul;Cheong, Hae-Kwan
    • Journal of Preventive Medicine and Public Health
    • /
    • v.31 no.3 s.62
    • /
    • pp.414-423
    • /
    • 1998
  • Metal fume fever has been known as an occupational disease is induced by intense inhalation of fresh metal fume with a particle size smaller than $0.5{\mu}m\;to\;1{\mu}m$. The fumes originate from heating metals beyond their boiling point, as happens, for example, in welding operations. Oxidation usually accompanies this process. In most cases, this syndrome is due to exposure to zinc oxide fumes; however, other metals like copper, magnesium, cadmium, manganese, and antimony are also reported to produce such reactions. Authors report a case of metal fume fever suspected to be associated with copper fume inhalation. The patient was a 42-year-old male and was a smoker. He conducted inert gas tungsten arc welding on copper-coated materials without safety precautions such as a protective mask and adequate ventilation. Immediately after work, he felt metallic taste in his mouth. A few hours after welding, he developed headache, chilling sensation, and chest discomfort. He also complained of myalgia, arthralgia, feverish sensation, thirst, and general weakness. Symptoms worsened after repeated copper welding on the next day and subsided gradually following two weeks. Laboratory examination showed a transient increase of neutrophil count, eosinophilia, elevated erythrocyte sedimentation rate, and positive C-reactive proteinemia. Blood and urine copper level was also increased compared to his wife. Before this episode, he experienced above complaints several times after welding with copper materials but welding of other metals did not produce any symptoms. It was suggested that copper fume would have induced metal fume fever in this case. Further investigations are needed to clarify their pathogenic mechanisms.

  • PDF

The Determination of Chemical Forms of Heavy Metals in Shooting Area Contaminated Soil Using Sequential Extraction Method (연속추출법을 이용한 사격장 오염토양 중 중금속의 화학적 형태 결정)

  • Moon, Gyeonghye;Park, Hongki;Yoo, Kyoungkeun;Manis Kumar, Jha;Richad Diaz, Alorro;Kim, Ju Yup
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.111-116
    • /
    • 2015
  • The soil sample obtained from shooting area contaminated with Pb, Cu, and Zn was investigated to determine the chemical forms of heavy metals with Tessier’s sequential extraction method, which is constituted of five fractions such as ‘exchangeable’, ‘bound to carbonate’, ‘bound to oxide’, ‘bound to organic matter’, and residual fractions. The amount of organic matter was measured by loss on ignition (LOI) and then the results of ‘bound to organic matter’ and LOI were compared. The sequential extraction results show that 4.7%-45% of Pb, 6.2%-25.9% of Cu and 3.9%-15.3% of Zn belong to the ‘bound to organic matter’ fraction, but LOI result shows that only 1.0%-2.8% of organic matter exists in the soil sample. In heavy medium separation tests, because Pb and Cu extracted in ‘bound to organic matter’ and residual fractions were removed, the heavy metals in the fractions would exist as heavier forms. These results suggest that the part of heavy metal extracted in ‘bound to organic matter’ fraction would result from the oxidation of metallic forms by hydrogen peroxide and nitric acid used in the fraction, and, consequently, that the ‘bound to organic matter’ fraction should be investigated in detail to determine the removal method and treatment capacity when the Tessier’s sequential extraction method is used to examine heavy metal contaminants resulted from elemental metal like bullets.

A Study on the Oxidation of Sintered $\beta-Sialon$from Coal Fly-Ash (석탄회로부터 제조된 $\beta-Sialon$의 고온산화반응)

  • Kil Dae-Sup;Kim Won-Baek;Lee Jae-Chun;Jang Hee-Dong
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.29-35
    • /
    • 2003
  • $\beta$-Sialon is synthesized by carbo-thermal reduction and nitriding (CTRN) method, using the Fly ash from power plant. $\beta$-Siaion is synthesized at $1,450^{\circ}C$ for 10 hours, and sintered at $1,550 ^{\circ}C$ for 3 hours in nitrogen atmosphere. The XRD analytical results show that the sintered $\beta$-Sialon contains $SiO_2$ and $FeSi_{x}$ of inter-metallic compound. The sintered $\beta$-Sialon is stable against the oxidation at the temperature of 1,31$0^{\circ}C$ for 20 hours. The weight of the sample increases rapidly by oxidation reaction at $1,360^{\circ}C$. The oxide scale is consisted with mullite phase when it is oxidized at the temperature of $1,360 ^{\circ}C$ for 10 hours.

Control of Metal-Oxide Nanostructures for $H_{2}-Alcohol$ Fuel Cells (수소-알코올연료전지를 위한 금속-산화물 나노구조제어)

  • Park, Kyung-Won;Song, You-Jung;han, Sang-Beom;Lee, Jong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.141-145
    • /
    • 2007
  • Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuel cells (DMFCs). Since pure platinum is readily poisoned by CO, a by-product of methanol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalysts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were designed by chemical synthesis and thin-film technology, and were characterized by a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with $2^{nd}$ metal (e.g., Ru) as well as the metallic state and optimum portion of Ru element in the anode catalyst contribute to an enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified electronic properties of platinum in Pt alloy electrodes as well as the surface and bulk structure of Pt alloys with a proper composition could be attributed to a higher catalytic activity for methanol electooxdation. Proton conducting contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (Spillover effect). Finally, we confirmed the ensemble effect, which combined all above effects, in Pt-based nanocatalsyts especially, such as PtRuRhNi and $PtRuWO_{3}$, contribute to an enhanced catalytic activity.

  • PDF