Browse > Article
http://dx.doi.org/10.5012/bkcs.2007.28.10.1751

Investigation of NH4OH on Zircaloy-4 Surfaces Using Electron Emission Spectroscopy  

Jung, Hye-Yoon (Department of Chemistry, Pukyong National University)
Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
Publication Information
Abstract
The interaction of ammonium hydroxide (NH4OH) with zircaloy-4 (Zry-4) was investigated using X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) methods. In order to study the surface chemistry of NH4OH/Zry-4 system, the binding energies of N1s, O1s and Zr3d electrons were monitored. The N1s peak intensity was remarkably increased by following cycles of Ar+ sputtering of NH4OH dosed Zry-4 surface at room temperature. Because the nitrogen stayed under the subsurface region was diffused out onto the Zry-4 surface after oxygen concentration was decreased. These could be occurred after the surface oxygen was diffused into the bulk or desorbed out from the surface until Ar+ fluence was 6.0 × 1016 Ar+/cm2 then the surface was relatively atomic deficient state. The O1s peak intensity was decreased by stepwise Ar+ sputtering. After many cycles of Ar+ sputtering, the peak intensities of Zr3d peaks did not change much but the shape of the peak clearly did change. This implies that the oxidation state of zirconium was changed during stepwise Ar+ sputtering of NH4OH/Zry-4. The Zr3d peak intensity of zirconium nitride (ZrNx) increased as the intensity of N1s (from zirconium nitride) increased but the Zr3d peak intensity of zirconium oxide (ZrOx) decreased due to the depopulation of the oxygen species on the surface region. We also observed that the peak intensity of Zr4+ was nearly same after Ar+ sputtering processes but the peak intensity of metallic zirconium increased compared to that of before the sputtering process was performed.
Keywords
X-ray photoelectron spectroscopy; Auger electron spectroscopy; Zircaloy-4; Ammonium hydroxide; Oxidation state;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Choo, K. N.; Kim, Y. S. J. Nucl. Mater. 2001, 297, 52   DOI   ScienceOn
2 Zhu, X. L.; Liu, S. B.; Man, B. Y.; Xie, C. Q.; Chen, D. P.; Wang, D. Q.; Ye, T. C.; Liu, M. Appl. Surf. Sci. 2007, 253, 3122   DOI   ScienceOn
3 Yamamoto, M.; Kurahashi, M.; Chan, C. T.; Ho, K. M.; Naito, S. Surf. Sci. 1997, 387, 300   DOI   ScienceOn
4 Benia, H. M.; Guemmaz, M.; Schmerber, G.; Mosser, A.; Parlebas, J. C. Appl. Surf. Sci. 2003, 211, 146   DOI   ScienceOn
5 Tanabe, T.; Tomita, M. Surf. Sci. 1989, 222, 84   DOI   ScienceOn
6 Kwon, J. H.; Youn, S. W.; Kang, Y. C. Bull. Korean Chem. Soc. 2006, 27, 11
7 Oh, K. S.; Kang, Y. C. Bull. Korean Chem. Soc. 2007, 28, 1341   DOI   ScienceOn
8 Stojilovic, N.; Kang, Y. C.; Ramsier, R. D. Surf. Interface Anal. 2002, 33, 945   DOI   ScienceOn
9 Cohen, P. Water Coolant Technology of Power Reactors; American Nuclear Society: USA, 1980
10 Kang, Y. C.; Ramsier, R. D. J. Nucl. Mater. 2002, 125, 303
11 Rizzo, A.; Signore, M. A.; Mirenghi, L.; Serra, E. Thin Solid Films 2006, 515, 1307   DOI   ScienceOn
12 Rizzo, A.; Signore, M. A.; Mirenghi, L.; Dimaio, D. Thin Solid Films 2006, 515, 1486   DOI   ScienceOn
13 Gu, Y.; Guo, F.; Qian, Y.; Zheng, H.; Yang, Z. Mater. Lett. 2003, 57, 1679   DOI   ScienceOn
14 Roustila, A.; Chene, J.; Severac, C. J. Alloy Compd. 2003, 356, 330   DOI   ScienceOn
15 Khatamian, D. J. Alloy Compd. 1997, 253, 471   DOI   ScienceOn
16 Bellanger, G.; Rameau, J. J. J. Mater. Sci. 2000, 35, 1759   DOI   ScienceOn
17 Yau, T. L.; Paul, B. O.; Henson, R. H. Chem. Process 1999, 62, 70
18 Kang, Y. C.; Ramsier, R. D. Vacuum 2002, 64, 113   DOI   ScienceOn
19 Fromm, E.; Jehn, H. Bull. Alloy Phase Diagrams. 1984, 5(3), 323
20 Konev, V. N.; Nadolskii, A. L.; Minyacheva, L. A. Oxidation Metals 1997, 47(3/4), 237   DOI   ScienceOn
21 Inoue, M.; Yamashita, M.; Suganuma, K.; Nunogaki, M. J. Nucl. Sci. Technol. 2001, 38, 980   DOI   ScienceOn
22 Lim, B. H.; Hong, H. S.; Lee, K. S. J. Alloy Compd. 2003, 312, 134
23 Wiame, H.; Centeno, M.-A.; Picard, S.; Bastians, P.; Grange, P. J. Eur. Ceram. Soc. 1998, 18, 1293
24 Peng, D. Q.; Bai, X. D.; Pan, F.; Sun, H.; Chen, B. S. Appl. Surf. Sci. 2005, 252, 1793   DOI   ScienceOn
25 Chemelle, P.; Knorr, D. B.; Van Der Sande, J. B.; Pelloux, R. M. J. Nucl. Mater. 1983, 113, 58   DOI   ScienceOn
26 Ahmad, M.; Akhter, J. I.; Ali, G.; Akhtar, M.; Choudhry, M. A. J. Alloy Compd. 2006, 426, 176   DOI   ScienceOn
27 Meyer, G.; Kobrinsky, M.; Abriata, J. P.; Bolcich, J. C. J. Nucl. Mater. 1996, 229, 48   DOI   ScienceOn
28 Hsu, H.-H. J. Alloy Compd. 2006, 426, 256   DOI   ScienceOn
29 Cox, B. J. Alloy Compd. 1997, 256, 244   DOI   ScienceOn
30 Zhang, C.-S.; Norton, P. R. J. Nucl. Mater. 2002, 300, 7
31 Galan, P. P.; Sanz, L.; Rueda, J. M. Surf. Interface. Anal. 1990, 16(1-12), 535
32 Hong, H. S.; Kim, S. J.; Lee, K. S. J. Nucl. Mater. 1999, 273, 177   DOI   ScienceOn
33 Stojilovic, N.; Ramsier, R. D. Appl. Surf. Sci. 2006, 252, 5839   DOI   ScienceOn
34 Stojilovic, N.; Bender, E. T.; Ramsier, R. D. J. Nucl. Mater. 2006, 348, 79   DOI   ScienceOn
35 Yamanaka, S.; Miyake, M.; Katsura, M. J. Nucl. Mater. 1997, 247, 315   DOI   ScienceOn