• 제목/요약/키워드: metallic element

검색결과 275건 처리시간 0.028초

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

Design of Plasmonic Slot Waveguide with High Localization and Long Propagation Length

  • Lee, Ki-Sik;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.305-309
    • /
    • 2011
  • We present an efficient design approach for a plasmonic slot waveguide using a genetic algorithm. The analyzed structure consists of a nanometric slot in a thin metallic film embedded within a dielectric. To achieve high confinement without long propagation length, the thickness and width of the slot are optimally designed in order to optimize the figures of merit including mode confinement and propagation length. The optimized design is based on the finite element method and enhances the guiding and focusing of light power propagation.

Prediction of the dynamic flow stress

  • Alves, Marcilio
    • Structural Engineering and Mechanics
    • /
    • 제20권5호
    • /
    • pp.495-504
    • /
    • 2005
  • This article explores a constitutive equation that is able to correlate stress, strain and strain rate. In order to show the advantages of the constitutive equation here proposed and how its material parameters are obtained, data extracted from the literature, for materials as different as polymers and metallic alloys, are used. Finite element simulation of the impact behaviour of a beam is presented to highlight the care one needs to exercise when using the more traditional Cowper-Symonds equation. The present constitutive equation has shown to be accurate for a wide range of strains, stresses and strain rates.

금속인장교정기의 공정변수 설계를 위한 탄소성 유한요소해석 (1)-단순모델 해석 (Elasto-plastic Finite Element Analysis for the Parametric Process Design of the Tension Leveller(1) -Unit Model Analysis)

  • 이형욱;허훈;박상래
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.138-146
    • /
    • 2002
  • This paper is concerned with the simulation-based process design method involved non-steady state problem of tension levelling considering the elasto-plastic hardening behavior of a metallic strip by a commercial code ABAQUS/Standard. The tension levelling process is peformed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat share. Objectives of this paper are the development of a general method for the design of a tension leveller by a finite element method and parameter studies for the deisgn variables such as the applied tension, the roll intermash includes the determination of the steady state using the simple unit of the tension levelling line and the effect of the finite element mesh size on the amount and distribution of the strain calculated. The analysis provides the information about the intermesh effect on the amount and final shapes of the strip and distribution of the strain in order to determine the amount elongation for correction of the irregular share.

탄소성 유한요소법을 이용한 금속인장교정기의 공정변수 설계 (Parametric Process Design of the Tension Levelling with an Elasto-plastic Finite Element Method)

  • 박상래;이형욱;허훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.42-48
    • /
    • 2000
  • This paper is concerned with a simulation-based process design for the tension levelling of metallic strips based on the elasto-plastic finite element analysis with reduced integration and hourglass control. The tension levelling process is performed to elongate the strip plastically in combination of tensile and bending strain by a controlled manner so that all longitudinal fibers in the strip have an approximately equal amount of length and undesirable strip shapes are corrected to the flat shape. The analysis deals with a method for calculating the quantitative level of the curl to investigate the roll arrangements and intermesh suitable to elimination of the curl. The analysis provides the information about the intermesh effect on the amount, the tension effect and distribution of the strain as well as the stress in order to determine the amount of elongation for correction of the irregular shape. The desired elongation is referred to determine the number of work rolls and the value of tension. Especially, the analysis investigates tile effect of the mesh size in the non-steady state finite element analysis on the amount and distribution of the strain.

  • PDF

유한요소법을 이용한 마그네슘 분말의 냉간정수압 공정시 치밀화 거동 해석 (Densification Behaviour of Magnesium Powders during Cold Isostatic Pressing using the Finite Element Method)

  • 윤승채;곽은정;최원형;김형근;김택수;김형섭
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.362-366
    • /
    • 2007
  • Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.

IMPACT ANALYSES AND TESTS OF CONCRETE OVERPACKS OF SPENT NUCLEAR FUEL STORAGE CASKS

  • Lee, Sanghoon;Cho, Sang-Soon;Jeon, Je-Eon;Kim, Ki-Young;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.73-80
    • /
    • 2014
  • A concrete cask is an option for spent nuclear fuel interim storage. A concrete cask usually consists of a metallic canister which confines the spent nuclear fuel assemblies and a concrete overpack. When the overpack undergoes a missile impact, which might be caused by a tornado or an aircraft crash, it should sustain an acceptable level of structural integrity so that its radiation shielding capability and the retrievability of the canister are maintained. A missile impact against a concrete overpack produces two damage modes, local damage and global damage. In conventional approaches [1], those two damage modes are decoupled and evaluated separately. The local damage of concrete is usually evaluated by empirical formulas, while the global damage is evaluated by finite element analysis. However, this decoupled approach may lead to a very conservative estimation of both damages. In this research, finite element analysis with material failure models and element erosion is applied to the evaluation of local and global damage of concrete overpacks under high speed missile impacts. Two types of concrete overpacks with different configurations are considered. The numerical simulation results are compared with test results, and it is shown that the finite element analysis predicts both local and global damage qualitatively well, but the quantitative accuracy of the results are highly dependent on the fine-tuning of material and failure parameters.

사용후 핵연료 수송용기 샌드위치 복합재 충격완충체의 유효등가 유한요소 모델 제시 (Effective Equivalent Finite Element Model for Impact Limiter of Nuclear Spent Fuel Shipping Cask made of Sandwich Composites Panels)

  • 강승구;임재문;신광복;최우석
    • Composites Research
    • /
    • 제28권2호
    • /
    • pp.58-64
    • /
    • 2015
  • 본 논문에서는 샌드위치 복합재 패널로 제작되는 사용후 핵연료 수송용기 충격완충체의 유효등가 유한 요소모델을 제시하는데 목적을 둔다. 샌드위치 복합재 패널은 금속재 면재와 각각 우레탄 폼, 발사목 그리고 레드우드 심재로 구성되었다. 충격완충체의 유효등가 유한요소 모델은 샌드위치 복합재 패널의 저속충격 시험과 해석결과와의 비교를 통해 제시되었으며, LS-DYNA 3D를 사용한 동적 외연 유한요소해석에 의해 수행되었다. 시험과 해석 결과, 충격완충체 샌드위치 패널의 유한요소 모델은 적층쉘 요소의 면재와 솔리드요소의 심재를 사용한 기존의 혼합모델링 기법에 비해 면재와 심재 모두 솔리드 요소를 적용하는 방법이 더 정확한 결과를 나타냄을 확인하였다. 이때 발사목과 레드우드 심재는 요소제거 기능을 갖는 솔리드 요소로 모델링 되는 것이 추천되어진다.

유한요소법을 이용한 탄소강의 경화능 해석(I) (Analysis of Hardenability for Carbon Steel using Finite Element Method (I))

  • 김옥삼;구본권
    • 열처리공학회지
    • /
    • 제11권2호
    • /
    • pp.131-139
    • /
    • 1998
  • The object of this research is to estimate the hardenability of quenched carbon steels AISI 1050. The equation of transient heat conduction was analyzed to derive cooling curve by finite element method. The effects of temperature on physical properties, metallic structures and the latent heat by phase transformation were considered. A good agreement was found between analytical and experimental results to show that the proposed numerical procedure was reliable. This procedure could be used as the detabase for optimal condition of heat treatment cycle.

  • PDF

Performance comparison of passive control schemes for the numerically improved ASCE cable-stayed bridge model

  • Domaneschi, Marco;Martinelli, Luca
    • Earthquakes and Structures
    • /
    • 제3권2호
    • /
    • pp.181-201
    • /
    • 2012
  • The benchmark on the ASCE cable-stayed bridge has gathered since its proposal the interest of many specialists in the field of the structural control and the dynamic response of long span bridges. Starting from the original benchmark statement in the MATLAB framework, a refined version of the bridge model is developed in the ANSYS commercial finite element environment. A passive structural control system is studied through non linear numerical analyses carried out in time domain for several seismic realizations in a multiple support framework. An innovative electro-inductive device is considered. Its positive performance is compared with an alternative version considering traditional metallic dampers.