• Title/Summary/Keyword: metal uptake

Search Result 261, Processing Time 0.026 seconds

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation (퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향)

  • Phonsuwan, Malinee;Lee, Min Ho;Moon, Byeong Eun;Kim, Young Bok;Kaewjampa, Naruemol;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.

Spectral Response of Red Lettuce with Zinc Uptake: Pot Experiment in Heavy Metal Contaminated Soil (아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험)

  • Shin, Ji Hye;Yu, Jaehyung;Kim, Jieun;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This study investigates the spectral response of red lettuce (Lactuca sativa var crispa L.) to Zn concentration. The control group and the experimental groups treated with 1 mM(ZnT1), 5 mM(ZnT2), 10 mM(ZnT3), 50 mM(ZnT4), and 100 mM(ZnT5) were prepared for a pot experiment. Then, Zn concentration and spectral reflectance were measured for the different levels of Zn concentration in red lettuce. The Zn concentration of the control group had the range of 134-181 mg/kg, which was within the normal range of Zn concentration in uncontaminated crops. However, Zn concentration in the experimental group gradually increased with an increase in concentration of Zn injection. The spectral reflectance of red lettuce showed high peak in the red band due to anthocyanin, high reflectance in the infrared band due to the scattering effect of the cell structure, and absorption features associated with water. As Zn concentration in red lettuce leaves increased, the reflectance increased in the green and red bands and the reflectance decreased in the infrared band. The correlation analysis between Zn concentration and spectral reflectance showed that the reflectance of 700-1300 nm had a significant negative correlation with Zn concentration. The spectral band is a wavelength region closely related to the cell structure in the leaf, indicating possible cell destruction of leaf structure due to increased Zn concentration. In particular, 700-800 nm reflectance of the infrared band showed the strongest correlation with the Zn concentration. This study could be used to investigate the heavy metal contamination in soil around mining and agriculture area by spectroscopically recognizing heavy metal pollution of plant.

Nuclear Imaging Evaluation of Galactosylation of Chitosan (핵의학 영상을 이용한 chitosan의 galactosylation 효과에 대한 평가)

  • Jeong, Hwan-Jeong;Kim, Eun-Mi;Park, In-Kyu;Cho, Chong-Su;Kim, Chang-Guhn;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Purpose: Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelator, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Methods and Materials: Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan. Cytotoxicity of $^{99m}Tc$-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with $^{99m}Tc$-GMC and $^{99m}Tc$-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. Results: The results of MTT assay indicated that $^{99m}Tc$-GMC was non-toxic. $^{99m}Tc$-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, $^{99m}Tc$-MC showed faint liver uptake. $^{99m}Tc$-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Conclusion: Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetabililty is a clear example of the great benefit proffered by nuclear imaging.

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.

Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system (하이브리드 빗물정원 시스템에서의 비점오염물질 및 강우유출수 이송 특성)

  • Flores, Precious Eureka D.;Maniquiz-Redillas, Marla C.;Geronimo, Franz Kevin F.;Alihan, Jawara Christian P.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.481-487
    • /
    • 2016
  • In this research, a pilot scale hybrid rain garden system was developed in order to investigate the efficiency in the different components of the hybrid rain garden system and at the same time evaluate the initial efficiency of the system in treating urban stormwater runoff prior to its actual use in the field. Experimental runs were conducted using synthetic runoff having target concentrations similar to that of the typical runoff characteristics found in different countries and in Korea. With the employment of the hybrid rain garden system, hydrologic improvement was observed as the system demonstrates an approximately 95% reduction in the influent runoff volume with 80% retained in the system, and 15% recharged to groundwater. The reduction was contributed by the retention capabilities of ST and infiltration capabilities in PB and IT. With the combined mechanisms such as filtration-infiltration, biological uptake from plants and soil and phytoremediation that are incorporated in PB and IT, the system effectively reduces the amount of pollutant concentration wherein the initial mean removal efficiency for TSS is 87%, while an approximate mean removal efficiency of 76%, 46% and 56% was observed in terms of organics, nutrients and heavy metal, respectively. With these findings, the research helps in the further improvement, innovation and optimization of rain garden systems and other facilities as well.

Effect of Mixed Planting Ratios of Pteris multifida Poir. and Artemisia princeps Pamp. on Phytoremediation of Heavy Metals Contaminated Soil (중금속 오염토양 정화에 영향을 미치는 봉의꼬리(Pteris multifida Poir.)와 쑥(Artemisia princeps Pamp.)의 혼합식재 비율)

  • Kwon, Hyuk Joon;Jeong, Seon A;Shin, So Lim;Lee, Cheol Hee
    • Korean Journal of Plant Resources
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2017
  • This study was performed to develop the efficient phytoremediation model in the paddy soil contaminated with heavy metals by cultivating Pteris multifida and Artemisia princeps with different mixing ratios (1:0, 8:1, 6:1, 4:1). As a result of investigating the heavy metal accumulation of each plant per dried material (1 kg), content of arsenic and cadmium was the highest in aerial part of P. multifida (169.82, $1.70mg{\cdot}kg^{-1}DW$, each) among the treated group. Lead content was the highest ($12.58mg{\cdot}kg^{-1}DW$) in the aerial part of P. multifida cultivated with 8:1 mixed planting. But the content of copper and zinc was the highest (33.94, $61.78mg{\cdot}kg^{-1}DW$, each) in the aerial part of A. princeps with 8:1 treatment. Regardless of heavy metals, plant uptake from the $1m^2$ soil was the highest in 4:1 mixed planting group, which showed the best yield of A. princeps.

Geochemical Behavior of Metals in the Contaminated Paddy Soils around Siheung and Deokeum Mines through Laboratory Microcosm Experiments (실내 microcosm실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구)

  • 김정현;문희수;안주성;김재곤;송윤구
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • Seasonal variations in vertical distributions of metals were investigated in the contaminated paddy soils around Siheung Cu-Pb-Zn and Deokeum Au-Ag mines. Geochemical behavior of metals was also evaluated with respect to redox changes during the cultivation of rice. Two microcosms simulating the rice-growing paddy field were set up in the laboratory. The raw paddy soils from two sites showed differences in mineralogy, metal concentrations and gecochemical parameters, and it is suggested that high proportions of exchangeable fractions in metals may give high dissolution rates at Deokeum. In both microcosms of Siheung and Deokeum, redox differences between surface and subsurface of paddy soils were maintained during the flooded period of 18 weeks. Siheung soil had neutral to alkaline pH conditions, while strongly acidic conditions and high Eh values were found at the surface soil of Deokeum. The concentrations of dissolved Fe and Mn were higher in the subsurface pore waters than in interface and upper waters from both microcosms, indicating reductive dissolution under reducing conditions. On the contrary, dissolved Pb and Zn had high concentrations at the surface under oxidizing conditions. From the Siheung microcosm, release of dissolved metals into upper waters was decreased. presumably by the trap effect of Fe- and Mn-rich layers at the interface. However, in the Deokeum microcosm, significant amounts of Pb and Zn were released into upper water despite the relatively lower contents in raw paddy soil, and seasonal variations in the chemical fractionation of metals were observed between flooded and drained conditions. Under acidic conditions, rice may uptake high amounts of metals from the surface of paddy soils during the flooded periods, and increases of exchangeable phases may also increase the bioavailability of heavy metals in the drained conditions.

Characteristics of heavy metals's exposure from playground flooring (놀이터 바닥재로부터 용출되는 중금속 노출 특성)

  • Cho, Yoon A;Kim, Woo Il;Shin, Sun Kyoung;Kang, Young Yeul;Kim, Min Sun;Jeong, Seong Kyoung;Yeon, Jin Mo;Jin, Na;Lee, Ji Young
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.416-420
    • /
    • 2012
  • The increasing use of recycling products results in the need for assessing the risk to human health. In this study heavy metals's contents of playground flooring were compared with rubber powder which is row material. And it is reviewed characteristics of heavy metals's exposure from absorption of skin, checking amount of dermal uptake for each heavy metal. Despite its high content, Zn had a very low migration rate with 0.1 $mg/cm^2$. This indicates that Zn is not easily released by surface contact. However, the contents of Fe and Al in flooring were 12 times higher than that of Zn and Fe, and Al showed migration rate 5 times higher than that of Zn. This implies that Fe and Al were derived from pigment in flooring. The measurement of dermal exposure to heavy metals at 6 playgrounds found higher level of exposure in Ba than in other heavy metals. It is assumed that despite high content of Zn, Ba had a higher exposure rate because five times as much Ba as Zn was darmal absorptionactor ($AF_{darmal}$).

Accumulation of Heavy Metals in Soil Growing for Red Pepper (Capsicum annuum) with using Lime Bordeaux and Lime Sulphur Mixture

  • Lee, Hyun Ho;Kim, Keun Ki;Lee, Yong Bok;Kwak, Youn Sig;Ko, Byong Gu;Lee, Sang Beom;Shim, Chang Ki;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.4
    • /
    • pp.318-324
    • /
    • 2017
  • Lime bordeaux mixture (LBM) and lime sulfur mixture (LSM) are representative environmental friendly organic materials for prevention of insect pests in South Korea. Recently, those have been widely used as an alternative for chemical pesticides in eco-friendly farms. However, South Korea has not established even recommendation of LBM and LSM considering the stability of heavy metals in soil. The aim of this study was to evaluate the accumulation of hazardous heavy metals in soil and plant with long-term application of LBM and LSM. Firstly, we investigated the amount of LBM and LSM used per year in several eco-friendly farms to determine a standard application rate of both materials. The pepper plant was grown on the pot in greenhouse for 14 weeks. Both materials were applied at 0, 1, 3, and 9 times of standard application rates (2.56 and $1.28L\;ha^{-1}$ of LBM and LSM per year, respectively). Dry matter yield of pepper and heavy metals (As, Cd, Cu, Hg, Ni, Pb, and Zn) concentration in soil and pepper plant were measured after 14 weeks. Yield of pepper plant did not significantly chang with up to application rate of 1 times, thereafter it markedly decreased with more than 3 times. With increasing LBM and LSM application, the concentration of Cu and Zn in soil significantly increased. Especially, Zn concentration in pepper significantly increased with increasing application rates of both materials. This might resulted in significant decrease in dry matter yield of pepper. The concentrations of those heavy metals in soil did not exceed safety levels ($150mg\;kg^{-1}$ for Cu and $300mg\;kg^{-1}$ for Zn) established by the Korean Soil Environmental Conservation Act as well as concentration of heavy metals in pepper plant by Korean Ministry of Food and Drug Safety. However, particular attention should be paid for heavy metal safety and crop productivity when using LBM and LSM in the organic farm.

Effect of Heavy Metal Contents in Soils Near Old Zinc-Mining Sites on the Growth of and their Uptake by Soybean (아연광산 인근 토양중의 중금속 함량이 콩의 생육 및 중금속 흡수에 미치는 영향)

  • Lee, Jong-Pal;Park, No-Kwuan;Park, Seon-Do;Choi, Boo-Sull;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.275-281
    • /
    • 1996
  • When soybean was cultivated in the polluted soil with heavy metals, the content of these heavy metals affected. The results were summarized as follows. 1. The growth of soybean was remarkably poor and the content of heavy metals in polluted soil were higher than in unpolluted soil. 2. In leaves of all surveyed crops, the content of Zn, Cu, Pb, Cd and As was higher in soybean, followed by corn and rice. 3. Except for Pb, the content of heavy metals in the leaves of soybean was higher than in the stem of soybean, and the components of heavy metals in each part of soybean were shown in order of Zn > As > Cd > Cu > Pb. 4. The relationship between the content of Zn, Cu, Pb, Cd, As and the growth of soybean was negatively correlated, respectively. 5. A higher correlation seemed to exist among the content of Zn, Cu, Pb, Cd, As in soil, of Zn, Cu and As in soybean leaves, and of Pb, Cd and As in stems of soybean. The results indicated that heavy metals were absorbed and accumulated by plants grown in the polluted area.

  • PDF