• Title/Summary/Keyword: metal stress

Search Result 1,553, Processing Time 0.026 seconds

A Micromechanical Analysis on the Elastic Behavior in Discontinuous Metal Matrix Composites (불연속 금속복합체에서의 탄성거동에 관한 미세구조역학적 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-64
    • /
    • 1997
  • A micromechanics model to describe the elastic behavior of fiber or whisker reinforced metal matrix composites was developed and the stress concentrations between reinforcements were investigated using the modified shear lag model with the comparison of finite element analysis (FEA). The rationale is based on the replacement of the matrix between fiber ends with the fictitious fiber to maintain the compatibility of displacement and traction. It was found that the new model gives a good agreement with FEA results in the small fiber aspect ratio regime as well as that in the large fiber aspect ratio regime. By the calculation of the present model, stress concentration factor in the matrix and the composite elastic modulus were predicted accurately. Some important factors affecting stress concentrations, such as fiber volume fraction, fiber aspect ratio, end gap size, and modulus ratio, were also discussed.

  • PDF

Evaluation of Static Strength Applying to Fracture Mechanics on Ceramic/Metal bonded Joint (세라믹/금속 접합재에 대한 정적강도의 파괴역학적 평가)

  • 김기성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.53-62
    • /
    • 1996
  • Recently, ceramic / metal bonded joints have led to inccreasing use of structural materials such as automobile, heat engine in various industries. In this paper, a method to analyze an interface crack under both residual stresses and applied loading was proposed. and some results of boundary element method(BEM) analysis Were presented, Fracture thoughness tests of ceramic/metals bonded joints with an interface crack Were carried out, and the stress intensity factors of these joints Ware analyzed by BEM. Also crack propagtion direction was simulated numerically by using BEM. Crack propagation angle was able to easily determine based on the maximum stress concept. The prediction of fracture strength by the fracture thoughness of the ceramics/metals bonded joints was proposed.

  • PDF

3-D Characteristics of the Residual Stress in the Plate Butt Weld Between SA508 and F316L SS (SA508/ F316L SS 맞대기 용접 판재의 3차원 잔류응력특성)

  • Lee, Kyoung-Soo;Kim, Tae-Ryong;Park, Jai-Hak;Kim, Man-Won;Cho, Seon-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.401-408
    • /
    • 2009
  • This study is performed to check the three dimensional characteristics of residual stress in the dissimilar metal weld. Although two dimensional analysis has been widely used for the assessment of weld residual stress, it has limitations to understand the stress distribution of the third direction. 3-D analysis was done to understand residual stress distribution of the welded plate. A simple butt-welded plate was considered to show the stress variation on all direction. A mock-up plate weldment was fabricated with SA-508 and F316L, which are widely used in nuclear power plants. The analysis results were validated with the measured values in the mock-up.

Photoelastic Study on Stress Distribution of the Fixed Partial Dentures with Various Designed Endosseous Implants (수종 골내 임플란트의 보철 수복물에 가해진 응력 분산에 관한 광탄성학적 연구)

  • Lee, Nung-Soo
    • The Journal of the Korean dental association
    • /
    • v.25 no.12 s.223
    • /
    • pp.1145-1156
    • /
    • 1987
  • The purpose of this experimental study was to analyze the stress distribution from fixed partial dentures to the surrounding structures. This study was carried out on the experimental bridges with K-L blade, F.D.B.I.-11 type, F.D.B.I.-21 type, shape-memory metal blade and two-Apacerams as posterior abutment. The stress patterns and fringes were observed through the circular transmission polariscope. The results of this study were obtained as follows: 1. The stress was more concentrated to the roots apex than the implants. 2. In all blade implants, the stress was more concentrated to the distal side than the mesial side. 3. F.D.B.I.-11 type was more stress concentrated than the 21 type. 4. Shape-memory metal blade was the most effective for stress distribution. 5. Apacerams were more stress concentrated than the blde types and in the model of Apaceram with rubber-ring, anterior root was tipped distally.

  • PDF

Temperature Effect on Ultrasonic Stress Wave Velocity of Wood (목재 초음파 전달속도에 대한 온도의 영향)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • Since ultrasonic stress wave velocity varies with wood temperature and moisture content, ultrasonic stress wave could be a tool to predict wood moisture content if temperature effect could be eliminated. This temperature effect was investigated by measuring the velocities of ultrasonic stress waves transmitting through air, a metal bar and a dimension lumber at various temperatures. For air the velocity and amplitude of the ultrasonic stress wave increase with temperature, while for a metal bar and a dimension lumber those decrease as temperature increases. However all three materials showed velocity hystereses with a temperature cycle. The effect of temperature and moisture content on stress wave velocity of a dimension lumber was depicted in the form of a three dimensional graph. The plot of stress wave velocity vs. wood moisture content was well fitted by two regression equations: a exponential equation below 46% and a linear equation above 46%.

  • PDF

Effect of Heterogeneous Microstructure on the Fracture Toughness of Weld Metal (용착금속의 파괴인성에 미치는 불균일 미세조직의 영향)

  • 정현호;김철만;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of microstructure on the fracture toughness of multi pass weld metal has been investigated. The micromechanisms of fracture process are identified by in-situ scanning electron microscopy(SEM) fracture observation using single edge notched specimen. The notches of the in-situ fracture specimens were carefully located such that the ends of the notches were in the as-deposited top bead and the reheated weld metal respectively. The observation of in-situ fracture process for as-deposited top bead indicated that as strains are applied, microcracks are formed at the interfaces between soft proeutectoid ferrite and acicular ferrite under relatively low stress intensity factor. Then, the microcracks propagate easily along the proeutectoid ferrite phase, leading to final fracture. These findings suggest that proeutectoid ferrite plays an important role in reducing the toughness of the weld metal. On the other hand, reheated regions showed that the microcrack initiated at the notch tip grows along the localized shear bands under relatively high stress intensity factor, confirming that reheated area showing momogeneous and fine microstructure would be beneficial to the fracture resistance of weld metal.

  • PDF

A Numerical Study on the Response of the Tibial Component in Total Knee Arthroplasty to Longitudinal Impact (인공무릎관절 전치환술에 있어 축방향 충격에 의한 Tibial Component의 응답 특성 분석 연구)

  • 조용균;조철형;최재봉;이태수;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.503-511
    • /
    • 1998
  • In this study, the stress distribution for different tibial components was observed In order to Investigate the load transfer and potential failure mechanism of the tibial components subjected to dynamic impact loading and also to evacuate the effect of bone-implant bonding conditions on the implant system. The 3-dimensional finite element models included an intact tibia, cemented metal-backed tibial component, uncemented metal-blocked tibial component, cemented all-polyethylene tibial component, and metal-backed component with a debonded bone/stem interface. The results showed that the cemented metal-hocked component Induced slightly higher peak stress at stem tip than the uncemented component. The peak stress of the all-polyethylene tibia1 component at stem trip showed about half thats of metal-backed tibial components. The all-polyethylene component showed a similar dynamic response to intact tibia. In case of debonded bone/stem interface, the peak stress below the metal tray was three times Higher than that of the fully bonded interface and unstable stress distribution at the stem tip was observed with time, which causes another adverse bone apposition and implant loosening. Thus, the all-polyethylene tibial component bonded fully to the surrounding bone might be most desirable system under an impact loading.

  • PDF

The effects of 3.5% NaCl solution on the corrosion fatigue crack propagation characteristics of SS41 steel (SS41강의 부식피로 균열 전파특성에 미치는 3.5% NaCl수용액의 영향)

  • 오세욱;김재철;최영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.111-119
    • /
    • 1987
  • The corrosion fatigue crack propagation characteristics of SS41 steel in 3.5% NaCl solution have been evaluated for loading frequencies of 1Hz and 0.2Hz. A sine wave loading profile was used for fatigue testing. Each test was carried out at a constant stress ratio, R(0.1). The main results are summarized as follows; 1. Fatigue crack propagation rate was higher in 3.5% NaCl solution than in air, higher in the base metal than in the weld metal, and higher at f =0.2Hz than at f =1Hz. 2. The crack closure level of the base metal was not influenced by cyclic frequencies, but that of the weld metal was much influenced. 3. When the crack closure effect was eliminated in the evaluation of crack propagation characteristics by using $\Delta K_{eff}$, the envirommental influence was distinctly observed. At the base metal, crack propagation rate was enhanced by the hydrogen embrittlement, and the weld metal was reduced by the crac closure. 4. There was clearly observed hydrogen embrittlement and severely corroded aspect at fracture surface of lower frequency than that of higher frequency, and at that of base metal than that of the weld metal.

  • PDF

Crack Growth Analysis due to PWSCC in Dissimilar Metal Butt Weld for Reactor Piping Considering Hydrostatic and Normal Operating Conditions (수압시험 및 정상운전 하중을 고려한 원자로 배관 이종금속 맞대기 용접부 응력부식균열 성장 해석)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Lee, Seung-Gun;Park, Heung-Bae;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.47-54
    • /
    • 2013
  • This study investigates the crack growth behavior due to primary water stress corrosion cracking (PWSCC) in the dissimilar metal butt weld of a reactor piping using Alloy 82/182. First, detailed finite element stress analyses were performed to predict the stress distribution of the dissimilar metal butt weld in which the hydrostatic and the normal operating loads as well as the weld residual stresses were considered to evaluate the stress redistribution due to mechanical loadings. Based on the stress distributions along the wall thickness of the dissimilar metal butt weld, the crack growth behavior of the postulated axial and circumferential cracks were predicted, from which the crack growth diagram due to PWSCC was proposed. The present results can be applied to predict the crack growth rate in the dissimilar metal butt weld of reactor piping due to PWSCC.