• Title/Summary/Keyword: metal salt

Search Result 451, Processing Time 0.033 seconds

Separation of Zr metal from $LiF-BeF_2-ZrF_4$ Molten Salt by Electrowinning (Electrowinning에 의한 $LiF-BeF_2-ZrF_4$ 용융염에서 Zr 금속 분리)

  • Woo, Mun-Sik;Yoo, Jae-Hyung;Kwon, Soo-Han
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.759-765
    • /
    • 2000
  • A study on the separation of Zr metal from $LiF-BeF_2-ZrF_4$ (67-27-6 mol%) molten salt was carried out using electrowinning. The decomposition potentials of the $LiF-BeF_2$ (72-28 mol%) and the $LiF-BeF_2-ZrF_4$ (67-27-6 mol%) molten salts were measured to be -1.55 and -1.35 volt, respectively. The Zr separation voltage from the salt were found to be in a range of -1.4 -1.5 volt. As increasing applied current, the deposition of molten salt on a cathode increases but the current efficiency decreases. In addition, the deposition and current efficiency decreases with increasing temperature.

  • PDF

A LiPF6-LiFSI Blended-Salt Electrolyte System for Improved Electrochemical Performance of Anode-Free Batteries

  • Choi, Haeyoung;Bae, YeoJi;Lee, Sang-Min;Ha, Yoon-Cheol;Shin, Heon-Cheol;Kim, Byung Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-89
    • /
    • 2022
  • ANODE-free Li-metal batteries (AFLMBs) operating with Li of cathode material have attracted enormous attention due to their exceptional energy density originating from anode-free structure in the confined cell volume. However, uncontrolled dendritic growth of lithium on a copper current collector can limit its practical application as it causes fatal issues for stable cycling such as dead Li formation, unstable solid electrolyte interphase, electrolyte exhaustion, and internal short-circuit. To overcome this limitation, here, we report a novel dual-salt electrolyte comprising of 0.2 M LiPF6 + 3.8 M lithium bis(fluorosulfonyl)imide in a carbonate/ester co-solvent with 5 wt% fluoroethylene carbonate, 2 wt% vinylene carbonate, and 0.2 wt% LiNO3 additives. Because the dual-salt electrolyte facilitates uniform/dense Li deposition on the current collector and can form robust/ionic conductive LiF-based SEI layer on the deposited Li, a Li/Li symmetrical cell exhibits improved cycling performance and low polarization for over 200 h operation. Furthermore, the anode-free LiFePO4/Cu cells in the carbonate electrolyte shows significantly enhanced cycling stability compared to the counterparts consisting of different salt ratios. This study shows an importance of electrolyte design guiding uniform Li deposition and forming stable SEI layer for AFLMBs.

Fused Salt Electrolysis of Magnesium Chloride (염화마그네슘의 용융염전해 연구)

  • Lee, Hoo-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.546-547
    • /
    • 2007
  • Magnesium is widely used as a lightweight alloy for car engine components and case of cellular phone. Extraction technologies of magnesium are divided to fused salt electrolysis process and thermal reduction process. In this study, electrolysis magnesium is prepared by fused salt electrolysis process with magnesium chloride. We compared two kinds of mixed salt at 7V. As a result, 47% of current efficiency was obtained by electrolyzing KCl/NaCl/$MgCl_2$ mixed salt bath at $760^{\circ}C$, and purity of the prepared magnesium was over 98%. With this study, we can scale up fused salt electrolysis device and accumulate basic data which will be needed for designing an electrolysis cell.

  • PDF

A Study on the Examination of Reaction Mechanism for Molten Salt Electrolysis of Titanium Dioxide (이산화타이타늄의 용융염 전기분해 반응기구 규명에 관한 연구)

  • Jo, Sung-Koo;Jung, Jae-Young
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.3
    • /
    • pp.182-187
    • /
    • 2009
  • The molten salt electrolysis is applied to reduce titanium dioxide to titanium metal using calcium chloride as an electrolyte and the reaction mechanism of the reduction process is examined by analyzing the reaction products. The process conditions to obtain titanium metal for $900^{\circ}C$ correspond to 2.9~3.2 V and 24 hours. The reaction products for 2.9 V at $900^{\circ}C$ include irregular-shaped titanium oxides such as $Ti_4O_7$, $Ti_3O_5$ and $Ti_2O_3$ and polyhedral $CaTiO_3$. Using these microstructure analysis, the sequential reaction mechanism for the electrochemical reduction of titanium dioxide to titanium is proposed.

A Study of the Metal Recovery from the Aluminium Scrap (Al 스크랩으로부터 금속회수에 관한 연구)

  • 김준수;임병모;윤의박
    • Resources Recycling
    • /
    • v.4 no.1
    • /
    • pp.25-30
    • /
    • 1995
  • In the preparatIon of reclaimed aluminium lllgot from alumimum scrap, the aluminium recovery was studied a as a function of the preliminary treatment of samples, addition of flux and melting atmosphere. AI dross is produced by an oxidation reaction at the surface of liquid metal. The recovery of AI metal increases u up to maximum 95% by adding salt up to 7%, The recovery of AI metal in the compacted chip bale without oil removal mcrease about 14% compared io non-compacted chip. In the case of the AI seed melting process, the recovery of Al metal of the crushed and compacted chip hale is 97%, In meltmg of alumimum scrap under the atmosphere of carbon and nitrogen gas, the recovery of AI metal increase, but it is decreased when the mixture of salt and carbon powder is added excessively.

  • PDF

Shape Control of Platinum Nanoparticles Using a Metal Salt (금속 염을 이용한 백금 나노입자의 형상제어)

  • Kwak, Seoung Yeul;Lee, Jin Ho;Kim, Jin Woo;Jung, Taek Kyun;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.393-397
    • /
    • 2012
  • $AgNO_3$ has the characteristic is controlling the inhibition or promotion of particle growth by adsorbing onto specific facets of platinum nanoparticles. Therefore, in this study, $AgNO_3$ was added to control the shape of platinum nanoparticles during the liquid phase reduction process. Consequently, platinum cubes were synthesized when $AgNO_3$ of 1.1 mol% (with respect to the Pt concentration) was added into the solution. Platinum octahedrons were synthesized when 32 mol% (with respect to the Pt concentration) was added into the solution. These results demonstrate that the metal salt $AgNO_3$, effectively controlled the relative growth rates of each facet of Pt nano particles.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

Employing high-temperature gas flux in a residual salt separation technique for pyroprocessing

  • Kim, Sung-Wook;Heo, Dong Hyeon;Kang, Hyun Woo;Hong, Sun-Seok;Lee, Sang-Kwon;Jeon, Min Ku;Hur, Jin-Mok;Choi, Eun-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1866-1870
    • /
    • 2019
  • Residual salt separation is an essential step in pyroprocessing because its reaction products, as prepared by electrochemical unit processes, contain frozen residual electrolyte species, which are generally composed of alkali-metal chloride salts (e.g., LiCl, KCl). In this study, a simple technique that utilizes high-temperature gas flux as a driving force to melt and push out the residual salt in the reaction products was developed. This technique is simple as it only requires the use of a heating gun in combination with a gas injection system. Consequently, $LiNO_3-ZrO_2$ and $LiCl-ZrO_2$ mixtures were successfully separated by the high-temperature gas injection (separation efficiency > 93%), thereby demonstrating the viability of this simple technique for residual salt separation.

Evaluation of mineral, heavy metal and phthalate contents in mudflat solar salt and foreign salt (국내산 갯벌천일염과 외국산 소금의 미네랄, 중금속 및 phthalate 함량 평가)

  • Kim, Hag-Lyeol;Lee, In-Seon;Kim, In-Cheol
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.520-528
    • /
    • 2014
  • The purpose of this study was to evaluated a phthalate, heavy metal contents and physicochemical quality properties in korean mudflat solar salt and foreign salts. DEHP in mudflat solar salt (MSS) was detected a low level (9.00~669.89 ppb), but it was shown a high level excess to 1.5 ppm criteria in the foreign solar salt (FSS) 5 type (3,440.64, 3,266.56, 2,189.65, 4,010.69, 4,554.20 ppb) and foreign large solar salt (FLSS) 1 type (1,983.27 ppb). Also, DEHP in FSS 2 type (930.15, 1,310.07 ppb) and FLSS 1 type (924.92 ppb) was detected a high level not excess to criteria. No detected DMP, DEP, DIBP, DBP, DAP, BBP, DCHP and DEHA contents in MSS and foreign salt (FS). Na ion was shown a significantly higher level (p<0.05) in FS (407,345.87~426,612.14 ppm) than in MSS (363,633.98 ppm), but it was shown a high level in Mg (p<0.01), K (p<0.05), Ca ion (p<0.05) of FSS compared to foreign refined salt (FRS). Cl ion (532,727.07 ppm) of MSS was the most low level (p<0.001) compared to FS, but it was shown a high level (p<0.001) in Br ion (625.07 ppm). $SO_4$ ion was not shown a significant difference in DS and FS. It was display a high level in Mn of MSS, and Al, Fe of FLSS. Heavy metal contents (As, Cd, Pb and Hg) in MSS and FS was not significant difference, it was safety level as edible salt.

Combined Effects of Metal Coagulants and Monochloramine on Polyamide RO Membrane Performance (금속성 응집제와 모노클로라민의 상호작용이 Polyamide계 RO막 성능에 미치는 영향)

  • Kim, Kyunghwa;Hong, Seungkwan;Park, Chanhyuk;Yoon, Seongro;Hong, Seongpyuo;Lee, Jonghwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.637-643
    • /
    • 2006
  • The bench-scale chlorine exposure study was performed to investigate the effect of pretreatment by free chlorine and monochloramine ($NH_2Cl$) on the performance of RO membranes made of polyamide (PA). Feed monochloramination at 2mg/L did not cause significant productivity loss compared to free chlorine. However, metal coagulants reacted with monochloramine, the PA membrane suffered from a gradual loss of membrane integrity by chlorine oxidation, which was characterized as a decrease in salt rejection. Especially, RO membranes exposed to alum coagulants with monochloramine revealed the salt rejection lower than those exposed to iron coagulants. XPS membrane surface analysis demonstrated that the chlorine uptake on the membrane surface increased and carbon peaks were shifted significantly when exposed to alum coagulants with monochloramine.