• 제목/요약/키워드: metal resource

Search Result 198, Processing Time 0.03 seconds

Domestic applicability of MT-based deep underground resource exploration based on the Australia Olympic Dam case (호주 Olympic Dam 사례를 바탕으로 한 MT 기반 심부 지하 광물자원 탐사의 국내 적용성)

  • Jeong, DongHo;Ryu, KyeongHo;Oh, SeokHoon
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.21-24
    • /
    • 2021
  • In this study, the development and production of electric vehicles and hydrogen vehicles are presented as a method for realizing carbon-neutral. Accordingly, the demand and need for development of underground metal mineral resources such as copper and nickel has increased. The research was carried out using MT survey, which is very useful for deep exploration such as mineral resources and oil exploration because of it's low cost and explorable depth. In Korea, there are very few cases of MT exploration in terms of mineral development, so the study was conducted based on the MT exploration conducted previously in AusLAMP, Australia. Through comparative analysis of the MT exploration data conducted to identify the ore body in the deep area of the Olympic Dam in Australia, with the data directly calculated in 2D inversion, it was confirmed that it can have a positive effect on the possibility of resource development and carbon neutrality using MT exploration in Korea.

Removal of Heavy Metals from Aqueous Solution by a Column Packed with Peat-Humin (Peat-Humin 충전 칼럼을 이용한 수용액 중의 중금속 제거)

  • Shin, Hyun-Snag;Lee, Chang-Hoon;Lee, Yo-Snag;Kang, Ki-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.535-541
    • /
    • 2005
  • Peat humin(p-Humin) extracted from Canadian Sphagnum peat moss was packed in a column and removal of heavy metal ions such as Cd, Cu and Pb from aqueous solution under flow conditions was studied. The metal ions were removed not only from single-element solutions but also from a multi-metal solution. Column kinetics for metal removal were described by the Thomas model. For single-component metal solutions, the maximum adsorption capacities of the p-Humin for Pb, Cu and Cd were 138.8, 44.66 and 41.61 mg/g, respectively. The results of multi-component competitive adsorption showed that adsorption affinity was in the order of Pb $\gg$ Cu > Cd. The adsorbed metal ions were easily deserted from the p-Humin with 0.05 N $HNO_3$ solution. It is apparent that 95% of the heavy metal ions were recovered from the saturated column. This investigation provides possibility to clean up heavy-metal contaminated waste waters by using the natural biomass, p-Humin as an environmentally friendly and cost-effective new biosorbents.

Scented Geraniums: a Model System for Phytoremediation

  • Raj, Sankaran-Krishna;Dixon, Michael-A;Praveen K. Saxena
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.4
    • /
    • pp.325-337
    • /
    • 2000
  • All living organisms depend on soil and water for their sustained growth and development. In recent years, sustenance of life in these growth matrices has been adversely affected by the cumulative increase in environmental pollutants resulting from increasing population, growing economies and resource-use. This review provides a glimpse into the problem of global environmental pollution, the traditional technologies available for remediation and the scope of emerging‘plant-based remediation’technologies. Phytoremediation, the use of plants to effectively remove or stabilize contaminants from the growth substrate, is a low cost and ecologically friendly alternative to the common‘dig and dump’technologies. The field of phytoremediation has been driven by the intrinsic need for identification of ideal candidate plant species. To date, there are only a very few identified plants which satisfy all of the prerequisites for use in phytoremediation. The review focuses on one such plant species, the common horticultural plant scented geranium (Pelargonium sp.), with demonstrated potential to remediate metal / salt contaminated soils / aqueous systems. The characterization of tolerance and metal / salt accumulation potential of Pelargonium sp. and its efficacy in remediating complex contaminated sites are described. The unique ability of scented geraniums to tolerate excessive amounts of multi-metals, hydrocarbon and salt mixtures, and at the same time to accumulate significant amounts of metal and salt ions in the biomass, renders this plant species as one of the ideal candidates for remediation.

  • PDF

The Optimal Resource Development for Analysing Data of Deposit Types' Ore Reserves of Oversea Metal Resource (해외 금속자원에 대한 광상유형별 자료 분석을 통한 효과적인 자원개발)

  • Yoo, Bong-Chul;Lee, Jong-Kil;Lee, Gil-Jae;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.773-795
    • /
    • 2008
  • The major import minerals of South Korea are copper ore, lead-zinc ore, iron ore, manganese ore and molybdenum ore. Oversea resources development of South Korea have 92 projects in 14 nations of Asia, 29 projects in 10 nations of America and Europe, and 14 projects in 9 nations of Middle Asia and Africa. But, most projects of them are found in Australia, China, Mongolia and Indonesia. The most projects of the Australia, China and Indonesia are interested in coal and a little projects of them have manganese, iron, lead-zinc, nickel, copper, gold, molybdenum, rare earth elements and uranium. The most projects of the Mongolia are interested in gold and rare earth elements. Representative ore deposits models of metal resources are Orogenic lode deposits, Volcanogenic massive sulphide deposits, Porphyry deposits, Sedimentary exhalative deposits, Mississippi valley type deposits, Iron oxide copper-gold deposits and Magmatic nickel-copper-platinum group element deposits based on global distribution, reverses and grades of their deposits models. If oversea mineral resources will be examined the mineral reserves, mineral mine production and ore deposits models of nations and then survey and investigate of mineral resources, we may be maintained ore body of high grade at survey area and decrease the investment risk.

Introduction to Electrochemical Quartz Crystal Microbalance Technique for Leaching Study of Metals (금속 침출연구를 위한 전기화학적 미소수정진동자저울 기술 소개)

  • Kim, Min-seuk;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Electrochemical Quartz Crystal microbalance is a tool that is capable of measuring nanogram-scale mass change on electrode surface. When applying alternating voltage to the quartz crystal with metal electrode formed on both sides, a resonant frequency by inverse piezoelectric effect depends on its thickness. The resonant frequency changes sensitively by mass change on its electrode surface; frequency increase with metal dissolution and decrease with metal deposition on the electrode surface. The relationship between resonant frequency and mass change is shown by Sauerbrey equation so that the mass change during metal dissolution can be measured in real time. Especially, it is effective in the case of reaction mechanism and rate studies accompanied by precipitation, volatilization, compound formation, etc. resulting in difficulties on ex-situ AA or ICP analysis. However, it should be carefully considered during EQCM experiments that temperature, viscosity, and hydraulic pressure of solution, and stress and surface roughness can affect on the resonant frequency. Application of EQCM was shown as a case study on leaching of platinum using aqueous chlorine for obtaining activation energy. A platinum electrode of quartz crystal oscillator with 1000 Å thickness exposed to solution was used as leaching sample. Electrogenerated chlorine as oxidant was purged and its concentration was controlled in hydrochloric acid solution. From the experimental results, platinum dissolution by chlorine is chemical reaction control with activation energy of 83.5 kJ/mol.

Isolation and Characterization of Pathogenesis-Related Protein 5 (PgPR5) Gene from Panax ginseng

  • Kim, Yu-Jin;Lee, Jung-Hye;Jung, Dae-Young;Sathiyaraj, Gayathri;Shim, Ju-Sun;In, Jun-Gyo;Yang, Deok-Chun
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.400-407
    • /
    • 2009
  • A pathogenesis-related protein (PgPR5) gene that isolated from the leaf of Panax ginseng was characterized. The ORF is 756 bp with a deduced amino acid sequence of 251 residues. The calculated molecular mass of the matured protein is approximately 27.5 kDa with a predicated isoelectric point of 7.80. A GenBank BlastX search revealed that the deduced amino acid of PgPR5 shares highest sequence similarity to PR5 of Actinidia deliciosa (80% identity, 87% similarity). PgPR5 has a C-terminal and N-terminal signal peptide, suggesting that it is a vacuolar secreted protein. The expression of PgPR5 under various environmental stresses was analyzed at different time points using real-time PCR. Our results reveal that PgPR5 is induced by salt stress, chilling stress, heavy metal, UV, and pathogen infection. These results suggest that the PgPR5 could play a role in the molecular defence response of ginseng to abiotic and pathogen attack. This is the first report of the isolation of PR5 gene from the P. ginseng.

Cadmium exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction

  • Min Ju Kim;Se‑Been Jeon;Hyo‑Gu Kang;Bong‑Seok Song;Bo‑Woong Sim;Sun‑Uk Kim;Pil‑Soo Jeong;Seong‑Keun Cho
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.48-57
    • /
    • 2024
  • Background: Cadmium (Cd) is toxic heavy metal that accumulates in organisms after passing through their respiratory and digestive tracts. Although several studies have reported the toxic effects of Cd exposure on human health, its role in embryonic development during preimplantation stage remains unclear. We investigated the effects of Cd on porcine embryonic development and elucidated the mechanism. Methods: We cultured parthenogenetic embryos in media treated with 0, 20, 40, or 60 µM Cd for 6 days and evaluated the rates of cleavage and blastocyst formation. To investigate the mechanism of Cd toxicity, we examined intracellular reactive oxygen species (ROS) and glutathione (GSH) levels. Moreover, we examined mitochondrial content, membrane potential, and ROS. Results: Cleavage and blastocyst formation rates began to decrease significantly in the 40 µM Cd group compared with the control. During post-blastulation, development was significantly delayed in the Cd group. Cd exposure significantly decreased cell number and increased apoptosis rate compared with the control. Embryos exposed to Cd had significantly higher ROS and lower GSH levels, as well as lower expression of antioxidant enzymes, compared with the control. Moreover, embryos exposed to Cd exhibited a significant decrease in mitochondrial content, mitochondrial membrane potential, and expression of mitochondrial genes and an increase in mitochondrial ROS compared to the control. Conclusions: We demonstrated that Cd exposure impairs porcine embryonic development by inducing oxidative stress and mitochondrial dysfunction. Our findings provide insights into the toxicity of Cd exposure on mammalian embryonic development and highlight the importance of preventing Cd pollution.

Development of Technical and Economic Evaluation Model for Seafloor Massive Sulfide Deposits (해저열수광상 기술.경제성평가 모델 개발)

  • Park, Se-Hun;Park, Seong-Wook;Kwon, Suk-Jae
    • Ocean and Polar Research
    • /
    • v.28 no.2
    • /
    • pp.187-199
    • /
    • 2006
  • The Kuroko-type seafloor massive sulfide deposits found in the western Pacific have been considered to have potentials for economic recovery of Au, Ag, Cu, Zn, and Pb. In this study, a preliminary model was developed for the technical and economic evaluation of them. The FRSC site on Lau Basin in the Tonga EEZ was selected as a target. In this study, no construction In for the metallurgical processing subsystem was accounted for. Instead, it was assumed to sell the Cu, Zn, and Pb concentrates to the existing sulfide customer smelter. The low total investment costs for the development make the venture very attractive. However, the result of the economic feasibility evaluation is still less attractive with the mean metal yield of the Kuroko on land. It is considered that commercial mining may be plausible if the richer metal yields are applied to the development. Quantitative information for metal yield is necessary for a more accurate evaluation. However, the important resource potential information regarding the amount of ore body, the inside structure, and the metal yields have not yet been clarified sufficiently. h addition, the flotation of ore body using seawater has not been tested yet. It is necessary to solve these problems through the experimental R&D and a survey.