DOI QR코드

DOI QR Code

Isolation and Characterization of Pathogenesis-Related Protein 5 (PgPR5) Gene from Panax ginseng

  • Kim, Yu-Jin (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Lee, Jung-Hye (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Jung, Dae-Young (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Sathiyaraj, Gayathri (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Shim, Ju-Sun (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • In, Jun-Gyo (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Products & Ginseng Genetic Resource Bank, Kyung Hee University)
  • Published : 2009.12.01

Abstract

A pathogenesis-related protein (PgPR5) gene that isolated from the leaf of Panax ginseng was characterized. The ORF is 756 bp with a deduced amino acid sequence of 251 residues. The calculated molecular mass of the matured protein is approximately 27.5 kDa with a predicated isoelectric point of 7.80. A GenBank BlastX search revealed that the deduced amino acid of PgPR5 shares highest sequence similarity to PR5 of Actinidia deliciosa (80% identity, 87% similarity). PgPR5 has a C-terminal and N-terminal signal peptide, suggesting that it is a vacuolar secreted protein. The expression of PgPR5 under various environmental stresses was analyzed at different time points using real-time PCR. Our results reveal that PgPR5 is induced by salt stress, chilling stress, heavy metal, UV, and pathogen infection. These results suggest that the PgPR5 could play a role in the molecular defence response of ginseng to abiotic and pathogen attack. This is the first report of the isolation of PR5 gene from the P. ginseng.

Keywords

References

  1. Abad, L. R., Durzo, M. P., Liu, D., Narasimhan, M. L., Reuveni, M., Zhu, J. K., Niu, X. M., Singh, N. K., Hasegawa, P. M. and Bressan, R. A. 1996. Antifimgal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci. 118:11-23 https://doi.org/10.1016/0168-9452(96)04420-2
  2. Bendtsen, J. D., Nielsen, H., von Heijine, G. and Brunak, S. 2004. Improved prediction of signal peptides: SingalP 3.0. J. Mol. BioI. 340:783-795 https://doi.org/10.1016/j.jmb.2004.05.028
  3. Breiteneder, H. 2004. Thaumatin-like proteins-a new family of pollen and fruit allergens. Allergy 59:479-481 https://doi.org/10.1046/j.1398-9995.2003.00421.x
  4. Campos, M. A., Ribeiro, S. G., Rigden, D. J., Monte, D. C. and Grossidesa, M. F. 2002. Putative pathogenesis-related genes within Solanum nigrum L. var. americanum genome: isolation of two genes coding for PR5-like proteins, phylogenetic and sequence analysis. Physiol. Mol. Plant Pathol. 61:205-216 https://doi.org/10.1006/pmpp.2002.0430
  5. Capelli, N., Diogon, T., Greppin, H. and Simon, P. 1997. Isolation and characterization of a cDNA clone encoding an osmotinlike protein from Arabidopsis thaliana. Gene 191:51-56 https://doi.org/10.1016/S0378-1119(97)00029-2
  6. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R, Appel, R. D. and Bairoch, A. 2005. Protein Identification and Analysis Tools on the ExPASy Server; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press. pp. 571-607
  7. Graham, J. S., Burkhart, W., Xiong, J. and Gillikin, J. W. 1992. Complete amino acid sequence of soybean leaf P21. Plant Physiol. 98:163-165 https://doi.org/10.1104/pp.98.1.163
  8. Hong, J. K., Jung, H. W., Lee, B. K., Lee, S. C., Lee, Y. K. and Hwang, B. K. 2004. An osmotin-like protein gene, CAOSMl, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress. Physiol. Mol. Plant Pathol. 64:301-310 https://doi.org/10.1016/j.pmpp.2004.10.004
  9. Jung, Y. C., Lee, H. J., Yum, S. S., Soh, W. Y., Cho, D. Y., Auh, C. K., Lee, T. K., Soh, H. C., Kim, Y. S. and Lee, S. C. 2005. Drought-inducible-but ABA-independent -thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep. 24:366-373 https://doi.org/10.1007/s00299-005-0944-x
  10. Kim, Y. J., Ham, A. R., Shim, J. S., Lee, J. H., Jung, D. Y., In, J. G., Lee, B. S. and Yang, D. C. 2008. Isolation and characterization of terpene synthase gene from Panax ginseng. J. Ginseng Res. 32:114-119 https://doi.org/10.5142/JGR.2008.32.2.114
  11. Kim, Y. J., Shim, J. S., Krishna, P. R., Kim, S. Y., In, J. G., Kim, M. K. and Yang, D. C. 2008. Isolation and characterization of a glutaredoxin gene from Panax ginseng C. A Meyer. Plant Mol. BioI. Rep. 26:335-349 https://doi.org/10.1007/s11105-008-0053-4
  12. King, G. J., Turner, V. A, Hussey, T. C., Wurtele, E. S., Lee, and M. S. 1988. Isolation and characterization of a tomato cDNA clone which code for a salt-induced protein. Plant Mol. BioI. 10:401-412 https://doi.org/10.1007/BF00014946
  13. Kyte, J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. BioI. 157:105-132 https://doi.org/10.1016/0022-2836(82)90515-0
  14. Liu, D., Raghothama, K. G, Hasegawa, P. M. and Bressan, R. A. 1994. Osmotin overexpression in potato delays development of disease symptoms. Proc. Natl. Acad. Sci. USA 91:1888-1892 https://doi.org/10.1073/pnas.91.5.1888
  15. Melchers, L. S., sela-Buurlage, M. B., Vloemans, S. A, Woloshuk, C. P., Van Roekel, J. S., Pen, J., van den Elzen, P. J. and Come-lissen, B. J. 1993. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and $\beta$-1,3-glucanase in transgenic plants. Plant Mol. BioI. 21:583-593 https://doi.org/10.1007/BF00014542
  16. Morris, P. C., Kumar, A., Bowles, D. J. and Cuming, A. C. 1990. Osmotic stress and abscisic acid regulate the expression of the Em gene of wheat. Eur. J. Biochem. 190:625-630 https://doi.org/10.1111/j.1432-1033.1990.tb15618.x
  17. Onishi, M., Tachi, H., Kojima, T., Shiraiwa, M. and Takahara, H. 2006. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoforms of PR-5 protein in soybean. Plant Physiol. Biochem. 44:574-580 https://doi.org/10.1016/j.plaphy.2006.09.009
  18. Piggott, N., Ekramoddoullah, A. K. M., Liu, J. J. and Yu, X. 2004. Gene cloning of a thaumatin-like (PR-5) protein of western white pine (Pinus monticola D. Don) and expression studies of members of the PR-5 group. Physiol. Mol. Plant Pathol. 64:1-8 https://doi.org/10.1016/j.pmpp.2004.05.004
  19. Rakwal, R., Agrawal, G. K. and Yonekura, M. 1999. Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: Induction of pathogenesis-related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20:3472-3478 https://doi.org/10.1002/(SICI)1522-2683(19991101)20:17<3472::AID-ELPS3472>3.0.CO;2-0
  20. Salzman, R. A., Tikhonova, I., Bordelon, B. P., Hasegawa, P. M. and Bressan, R. A. 1998. Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape. Plant Physiol. 117:465-472 https://doi.org/10.1104/pp.117.2.465
  21. Sato, F., Koiwa, H., Saki, Y., Kato, N. and Yamada, Y. 1995. Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobcco and yeast. Biochem. Biophys. Res. Commun. 211:909-913 https://doi.org/10.1006/bbrc.1995.1898
  22. Singh, N. K., Handa, A. K., Hasegawa, P. M. and Bressan, R. A. 1985. Protein associated with adaptation of cultured tobacco cells to NaCI. Plant Physiol. 79:126-137 https://doi.org/10.1104/pp.79.1.126
  23. Singh, N. K., Braker, C. A., Hasegawa, P. M., Handa, A. K., Hermodson, M. A., Pfankoch, E., Regnier, F. E. and Bressan, R. A. 1987. Characterization of osmotin. Plant Physiol. 85:529-536 https://doi.org/10.1104/pp.85.2.529
  24. Seifert, K. A., McMullen, C. R., Yee, D., Reeleder, R. D. and Dobinson, K. F. 2003. Molecular differentiation and detection of ginseng adapted isolates of the root rot fungus Cylindrocar-pon destructans. Phytopathol. 93:1533-1542 https://doi.org/10.1094/PHYTO.2003.93.12.1533
  25. Stintzi, A., Heitz, T., Prasad, V., Kauffinann, W. M. S., Geoffroy, P., Legrand, B. and Fritig, B. 1993. Plant 'Pathogenesis-related' proteins and their role in defense against pathogens. Biochimie. 75:687-706 https://doi.org/10.1016/0300-9084(93)90100-7
  26. Tachi, H., Fukuda-Yamada, K., Kojima, T., Shiraiwa, M. and Rakahara, H. 2009. Molecular characterization of a novel soybean gene encoding a neutral PR-5 protein induced by high-salt stress. Plant Physiol. Biochem. 47:73-79 https://doi.org/10.1016/j.plaphy.2008.09.012
  27. Van der Well, H. and Loeve, K. 1972. Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur. J. Biochem. 31:221-225 https://doi.org/10.1111/j.1432-1033.1972.tb02522.x
  28. van Loon, L. C., Rep, M. and Pieterse, C. M. J. 2006. Significance of inducible defense related proteins in infected plants. Ann. Rev. Phytopathol. 44:1-28 https://doi.org/10.1146/annurev.phyto.44.070505.143321
  29. van Loon, L. C. and van Kammen, A. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. Samsun and Samsun NN. II. Changes in protein constitution after infection with tobacco mosaic virus. Virol. 40:199-211 https://doi.org/10.1016/0042-6822(70)90395-8
  30. Vigers, A. J., Roberts, W. K. and Selitrennikoff, C. P. 1991. A new family of plant antifungal proteins. Mol. Plant Microbe Interact. 4:315-323 https://doi.org/10.1094/MPMI-4-315
  31. Zhu, B., Chen, T. H. H. and Li, P. H. 1993. Expression of an ABA-responsive osmotin-like protein gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol. BioI. 21:729-735 https://doi.org/10.1007/BF00014558
  32. Zhu, B., Chen, T. H. H. and Li, P. H. 1995. Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol. BioI. 28:17-26 https://doi.org/10.1007/BF00042034

Cited by

  1. Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34 vol.39, pp.3, 2015, https://doi.org/10.1016/j.jgr.2014.12.002
  2. Insilico Analysis for Expressed Sequence Tags from Embryogenic Callus and Flower Buds of Panax ginseng C. A. Meyer vol.35, pp.1, 2011, https://doi.org/10.5142/jgr.2011.35.1.021
  3. Cloning and characterization of PR5 gene from Curcuma amada and Zingiber officinale in response to Ralstonia solanacearum infection vol.30, pp.10, 2011, https://doi.org/10.1007/s00299-011-1087-x
  4. Defense Genes Induced by Pathogens and Abiotic Stresses in Panax ginseng C.A. Meyer vol.35, pp.1, 2011, https://doi.org/10.5142/jgr.2011.35.1.001
  5. Transcriptome profiling and insilico analysis of Gynostemma pentaphyllum using a next generation sequencer vol.30, pp.11, 2011, https://doi.org/10.1007/s00299-011-1114-y
  6. Large-scale protein analysis of European beech trees following four vegetation periods of twice ambient ozone exposure vol.109, 2014, https://doi.org/10.1016/j.jprot.2014.05.021