DOI QR코드

DOI QR Code

Development of Technical and Economic Evaluation Model for Seafloor Massive Sulfide Deposits

해저열수광상 기술.경제성평가 모델 개발

  • 박세헌 (한국해양연구원 해양과학기술정책연구센터) ;
  • 박성욱 (한국해양연구원 해양과학기술정책연구센터) ;
  • 권석재 (한국해양연구원 해양과학기술정책연구센터)
  • Published : 2006.06.30

Abstract

The Kuroko-type seafloor massive sulfide deposits found in the western Pacific have been considered to have potentials for economic recovery of Au, Ag, Cu, Zn, and Pb. In this study, a preliminary model was developed for the technical and economic evaluation of them. The FRSC site on Lau Basin in the Tonga EEZ was selected as a target. In this study, no construction In for the metallurgical processing subsystem was accounted for. Instead, it was assumed to sell the Cu, Zn, and Pb concentrates to the existing sulfide customer smelter. The low total investment costs for the development make the venture very attractive. However, the result of the economic feasibility evaluation is still less attractive with the mean metal yield of the Kuroko on land. It is considered that commercial mining may be plausible if the richer metal yields are applied to the development. Quantitative information for metal yield is necessary for a more accurate evaluation. However, the important resource potential information regarding the amount of ore body, the inside structure, and the metal yields have not yet been clarified sufficiently. h addition, the flotation of ore body using seawater has not been tested yet. It is necessary to solve these problems through the experimental R&D and a survey.

Keywords

References

  1. 高草木政英. 1954. 粗の性質化と浮選成績の動に就て. 浮選, 1, 12-19.
  2. 朴洗憲, 山崎哲生, 島田莊平, 山本恭久. 2002. コバルトリッチクラストのポテンシャル比較手法の開發. 資源と素材, 118, 641-649.
  3. 飯島一. 1967. 黑のオ一ルバルク優先浮選方式について. 日本鉱業會誌, 83, 364-369.
  4. 石岡豊三, 高橋堅之. 1975. 神子畑選工場の遷と現況. 日鉱本業會誌, 91, 251-258.
  5. 石炭開發技術協力センタ一. 1993. よくわかる資源の経濟性評侕. Tokyo, 208 p.
  6. 前田耕一. 1976. 硫酸による銅と鉛.亞鉛の分離浮選について. 浮選, 23, 249-251.
  7. 한국감정원. 1999. 유형고정자산 내용년수표. ISBN 89-88365-01-1, 425 p.
  8. 해양수산부. 2003. 남서태평양 해저열수광상 탐사 및 개발.
  9. 해양수산부. 2004. 남서태평양 해저열수광상 탐사 및 개발.
  10. 해양수산부. 2005. 남서태평양 해저열수광상 탐사 및 개발.
  11. Amann, H. 1985. Development of ocean mining in the Red Sea. Mar. Mining, 5, 103-116.
  12. Andrews, B.V., J.E. Flipse, and F.C. Brown. 1983. The Economic Viability of a Four-Metal Pioneer Deep Ocean Mining Venture. Texas A&M University College Station, Texas. 201 p.
  13. Bendel, V., Y. Fouque, J.M. Auzende, Y. Lagabrielle, D. Grimaud, and T. Urabe. 1993. The White Lady Hydrothermal Field, North Fiji back-arc basin, Southwest Pacific. Econ. Geol., 88, 2237-2249. https://doi.org/10.2113/gsecongeo.88.8.2237
  14. Deepak, C.R., M.A. Shajahan, M.A. Atmanand, K. Annamalai, R. Jeyamani, M. Ravindran, E. Schulte, R. Handschuh, J. Panthel, H. Grebe, and W. Schwarz. 2001. Developmental Test on the Underwater Mining System Using Flexible Riser Concept. p. 94-98. In: Proc. of the 4th ISOPE Ocean Mining Symp., Szczecin, Poland.
  15. Fouquet, Y., U. Von Stackelberg, J.L. Charlou, J.P. Donval, J. Erzinger, J.P. Foucher, P. Herzig, R. Muhel, S. Soakai, M. Wiedickie, and H. Whitechurch. 1991. Hydrothermal activity and metallogenesis in the Lau Back-arc Basin. Nature, 349, 778-781. https://doi.org/10.1038/349778a0
  16. Francheteau, J., T. Juteau, and C. Rangan. 1979. Basaltic pillars in collapsed lava-pools on the deep ocean-floor. Nature, 281, 209-211. https://doi.org/10.1038/281209a0
  17. Halbach, P., K. Nakamura, M. Wahsner, J. Lange, L. Kaselitz, R.D. Hansen, M. Yamano, J. Post, B. Prause, R. Seifert, W. Michaelis, F. Teichmann, M. Kinoshita, A. Marten, J. Ishibashi, S. Czerwinski, and N. Blum. 1989. Probable modern analogue of Kuroko-type massive sulfide deposit in the Okinawa Trough back-arc basin. Nature, 338, 496-499. https://doi.org/10.1038/338496a0
  18. Haymon, R.M. and M. Kastner. 1981. Hot spring deposits on the East Pacific Rise at 21oN: Preliminary description of mineralogy and genesis. Earth Planet. Sci. Lett., 53, 363-381. https://doi.org/10.1016/0012-821X(81)90041-8
  19. Hekinian, R., M. Fevrier, J.L. Bishoff, P. Picot, and W.C. Shanks. 1980. Sulfide deposits from the east pacific rise near $20^{\circ}N$. Science, 207, 1,433-1,444. https://doi.org/10.1126/science.207.4438.1433
  20. Hekinian, R., M. Fevrier, F. Avedik, P. Cambon, J.L. Charlou, H.D. Needham, L. Raillard, J. Boulegue, L. Merlivant, A. Moinet, S. Manganini, and L. Lange. 1983. East Pacific Rise near $13^{\circ}N$: Geology of new hydrothermal field. Science, 219, 1321-1324. https://doi.org/10.1126/science.219.4590.1321
  21. Iizasa, K., R.S. Fiske, O. Ishizuka, M. Yuasa, J. Hashimoto, J. Ishibashi, J. Naka, Y. Horii, Y. Fujiwara, A. Imai, and S. Koyama. 1999. A Kuroko-type polymetallic sulfide deposit in a submarine silicic caldera. Science, 283, 975-977. https://doi.org/10.1126/science.283.5404.975
  22. Macdonald, K.C., P.J. Fox, L.J. Perram, M.F. Eisen, R.M. Haymon, S.P. Miller, S.M. Carbotte, M.-H. Cormier, and A.N. Shor. 1988. A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature, 335, 217-225. https://doi.org/10.1038/335217a0
  23. Morgan, J.P. and Y.J. Chen. 1993. Dependence of ridge-axis morphology on magma supply and spreading rate. Nature, 364, 706-708. https://doi.org/10.1038/364706a0
  24. Nawab, Z. 2001. Atlantis II Deep: A future deep sea mining site. p. 301-313. In: Proc. Proposed Technologies for Mining Deep-Seabed Polymetallic Nodules, Kingston, Jamaica, Int. Seabed Authority.
  25. Rona, P.A. 1985. Hydrothermal mineralization at slowspreading centers: Red Sea, Atlantic Ocean, and Indian Ocean. Mar. Mining, 5, 117-145.
  26. Sarata, S. and K. Matsumoto. 1999. Deepsea cor boring by BMS in Northern Mariana Area. p. 49-54. In: Proc. 3rd ISOPE Ocean Mining Symp., Goa.
  27. Schwarz, W. 2001. An Advanced Nodule Mining System. p. 39-54. In: Proc. Proposed Tech. for Mining Deep-Seabed Polymetallic Nodules, Kingston, Jamaica, Int. Seabed Authority.
  28. Scott, S.D. 1985. Seafloor polymetallic sulfide deposits: modern and ancient. Mar. Mining, 5, 191-212.
  29. Sillitoe, R.H. 1982. Extensional habitats of rhyolite-hosted massive sulfide deposits. Geology, 10, 403-407. https://doi.org/10.1130/0091-7613(1982)10<403:EHORMS>2.0.CO;2
  30. Soreide, F., T. Lund, and J.M. Markussen. 2001. Deep Ocean Mining Reconsidered a Study of the Manganese Nodule Deposits in Cook Island. p. 88-93. In: Proc. 4th ISOPE Ocean Mining Symp., Szczecin, Poland.
  31. Spiess, F.N., K.C. Macdonald, T. Arwater, R. Ballard, A. Carranza, D. Cordoba, C. Cox, V. Diaz-Garcia, J. Francheteau, J. Guerrero, J. Hawkins, R. Haymon, R. Hessler, T. Juteau, M. Kastner, R. Larson, B. Luyendyk, D. Macdougall, S. Miller, W. Normark, J. Orcutt, and C. Rangin. 1980. East Pacific Rise: Hot springs and geophysical experiments. Science, 207, 1,421-1,433. https://doi.org/10.1126/science.207.4438.1421
  32. World Bureau of Metal Statistics. 2005. World Metal Statistics.
  33. Yamada, H. and T. Yamazaki. 1998. Japan’s ocean test of the nodule mining system. p. 13-19. In: Proc. of the 8th Int Offshore and Polar Eng. Conf., Montreal.
  34. Yamazaki, T., K. Tsurusaki, and K. Handa. 1991. Discharge from manganese nodule mining system. p. 440-446. In: Proc. of the 1st Int Offshore and Polar Eng. Conf, Edinburgh.
  35. Yamazaki, T. and S.-H. Park. 2003. Relationship between geotechnical engineering properties and assay of seafloor massive sulfides. p. 310-316. In: Proc. 13th Int. Conf. Offshore and Polar Eng., Honolulu.
  36. Yamazaki, T., S.-H. Park, S. Shimada, K. Iizasa, and S. Shiokawa. 2003. A case study of mining seafloor massive sulfides in Japanese EEZ. p. 63-70. In: Proc. 5th ISOPE Ocean Mining Symp., Tsukuba.
  37. Yamazaki, T., Y. Tomishima, K. Tsurusaki, and K. Handa. 1990. Engineering properties of deep-sea mineral resources. p. 385-392. In: Proc. of the 4th Pacific Congress on Marine Sci. and Tech.

Cited by

  1. Strategies for the Commercial Development of Seafloor Hydrothermal Deposits in Consideration of International Progress vol.32, pp.4, 2010, https://doi.org/10.4217/OPR.2010.32.4.475