• 제목/요약/키워드: metal reduction

검색결과 1,692건 처리시간 0.027초

탄소성해석을 이용한 금속 개스킷용 톱니형 코어 가공 하중 평가 (Estimation on Serrated Core Machining Load for Metal Gasket using Elasto-plastic Analysis)

  • 김태형;이성욱
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.145-151
    • /
    • 2012
  • In this study, finite element analysis is carried out to estimate horizontal forces needed for the required power calculation and vertical forces applied on the structural analysis model for the development of automatic serrated surface at metal gasket core machining system. By considering of elasto-plastic material characteristics, nonlinear contact analysis was conducted to compute these loads according to the change of roll reduction, frictional coefficient and core thickness. As the result, horizontal and vertical reaction force variations are found according to parameters and maximum reaction force is also confirmed to be most affected by roll reduction.

SK85 고탄소강의 구상화 거동 (Spheroidization Behavior of SK85 High Carbon Steel)

  • 하태권;김근준;나길환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.350-353
    • /
    • 2009
  • In the present study, the effect of initial microstructure, cold reduction ratio, and annealing temperature on the spherodization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $800^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ for 5 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure. Cold rolling was conducted on the sheets of fine pearlite by reduction ratios of 20, 30, and 40% and heat treatment for spheroidization was carried out at 600 and $720^{\circ}C$ for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

Development of a Mass Transfer Model and Its Application to the Behavior of the Cs, Sr, Ba, and Oxygen ions in an Electrolytic Reduction Process for SF

  • 박병흥;강대승;서중석;박성원
    • 방사성폐기물학회지
    • /
    • 제3권2호
    • /
    • pp.85-93
    • /
    • 2005
  • Isotopes of alkali and alkaline earth metals (AM and AEM) are the main contributors to the heat load and the radiotoxicity of spent fuel (SF) . These components are separated from the SF and dissolved in a molten LiCl in an electrolytic reduction process. A mass transfer model is developed to describe the diffusion behavior of Cs, Sr, and Ba in the SF into the molten salt. The model is an analytical solution of Fick's second law of diffusion for a cylinder which is the shape of a cathode in the electrolytic reduction process. And the model is also applied to depict the concentration profile of the oxygen ion which is produced by the electrolysis of Li$_{2}$O. The regressed diffusion coefficients of the model correlating the experimentally measured data are evaluated to be greater in the order of Ba, Cs, and Sr for the metal ions and the diffusion of the oxygen ion is slower than the metal ions which implies that different mechanisms govern the diffusion of the metal ions and the oxygen ions in a molten LiCl.

  • PDF

고리1호기 해체시 발생할 방사성금속폐기물 관리 옵션 연구 (Options Manageing for Radioactive Metallic Waste From the Decommissioning of Kori Unit 1)

  • 데이빗 케슬;김창락
    • 방사성폐기물학회지
    • /
    • 제15권2호
    • /
    • pp.181-189
    • /
    • 2017
  • 방사성금속폐기물의 관리 옵션들을 안전성, 경제성, 작업자 피폭, 부피 감용 등의 선별 기준을 적용하여 비교 평가하였다. 원전 해체로부터 발생하는 금속폐기물의 관리 옵션에는 무구속 방출, 제한적 재사용, 그리고 직접 처분이 있다. 고려된 각각의 옵션들은 금속폐기물의 절단과 용융에 의한 부피감용을 수반한다. AHP기법을 적용하여 각 옵션들의 순위를 부여하였다. 방사성금속폐기물을 용융하여 금속 잉곳을 제조한 후 제한적 재이용 또는 무구속 방출하는 방안이 가장 효율적인 옵션으로 도출되었다.

Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer

  • Shim, Il-Wun;Noh, Won-Tae;Kwon, Ji-Woon;Jo, Jung-Young;Kim, Kyung-Soo;Kang, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권4호
    • /
    • pp.563-566
    • /
    • 2002
  • Copper complexes have been directly incorporated into cellulose acetate (CA) and the resulting light blue colored homogeneous films of 5-20 wt.% copper acetate complex concentrations are found to be thermally stable up to 200 $^{\circ}C$. The reaction chem istry of Cu in CA has been investigated by reacting them with small gas molecules such as CO, H2, D2, O2, NO, and olefins in the temperature range of 25-160 $^{\circ}C$, and various Cu-hydride, -carbonyl, -nitrosyl, and olefin species coordinated to Cu sites in CA are characterized by IR and UV/Vis spectroscopic study. The reduction of Cu(II) complexes by reacting with H2 gas at the described conditions results in the formation of Cu2O and copper metal nanoparticles in CA, and their sizes in 30-120 nm range are found to be controlled by adjusting metal complex concentration in CA and/or the reduction reaction conditions. These small copper metal particles show various catalytic reactivity in hydrogenation of olefins and CH3CN; CO oxidation; and NO reduction reactions under relatively mild conditions.

금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감 (Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation)

  • 김종오;정종태
    • 멤브레인
    • /
    • 제14권1호
    • /
    • pp.66-74
    • /
    • 2004
  • 합성 하수 및 실제 하수를 이용한 금속 막의 정밀 여과 공정에서 분리 막의 전체 저항의 증가는 입자의 막 표면 축적에 의한 케이크 층의 저항 ($R_c$)에 가장 큰 영향을 받았다. 막 오염 저감을 위한 방법으로 오존 가스를 이용한 간헐적 역세정은 공기에 의한 경우보다 막 오염 저감에 훨씬 더 효과적인 것으로 나타났다. 운전 인자에 대한 영향으로 동일한 오존 주입량에서는 주입시간을 길게 하기보다는 주입 가스 유량을 크게 할수록 더 높은 막 투과 유속의 회복을 보였다. 여과시간이 길수록 오존가스를 이용한 막 오염 저감효과가 감소하는 것으로 나타나 부착층 및 막 내부에서 파울링 물질에 의한 비가역적인 막 오염이 발생하기 전에 막 세정을 실시하는 것이 바람직한 것으로 판단된다.

DEVELOPMENT OF PYROPROCESSING AND ITS FUTURE DIRECTION

  • Inoue, Tadashi;Koch, Lothar
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.183-190
    • /
    • 2008
  • Pyroprocessing is the optimal means of treating spent metal fuels from metal fast fuel reactors and is proposed as a potential option for GNEP in order to meet the requirements of the next generation fuel cycle. Currently, efforts for research and development are being made not only in the U.S., but also in Asian countries. Electrorefining, cathode processing by distillation, injection casting for fuel fabrication, and waste treatment must be verified by the use of genuine materials, and the engineering scale model of each device must be developed for commercial deployment. Pyroprocessing can be effectively extended to treat oxide fuels by applying an electrochemical reduction, for which various kinds of oxides are examined. A typical morphology change was observed following the electrochemical reduction, while the product composition was estimated through the process flow diagram. The products include much stronger radiation emitter than pure typical LWR Pu or weapon-grade Pu. Nevertheless, institutional measures are unavoidable to ensure proliferation-proof plant operations. The safeguard concept of a pyroprocessing plant was compared with that of a PUREX plant. The pyroprocessing is better adapted for a collocation system positioned with some reactors and a single processing facility rather than for a centralized reprocessing unit with a large scale throughput.

금속사출성형을 위한 W-10wt.%Cu 분말의 제조에 관한 연구 (Fabrication of W-10wt.%Cu Powder for the Application of Metal Injection Molding)

  • 김순욱;손찬현;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.245-252
    • /
    • 2001
  • Recent remarkable progress in the semiconductor industry has promoted smaller size of semiconductor chips and increased amounts of heat generation. So, the demand for a substrate material to meet both the characteristics of thermal expansion coefficient and heat radiation has been on the increase. Under such conditions, tungsten(W)-copper(Cu) has been proposed as materials to meet both of the above characteristics. In the present study, the W-10wt.%Cu powders were synthesised by the mixing and hydrogen reduction of the starting mixture materials such as W-Cu, $W-CuCl_2$and $WO_3-CuCl_2$ in order to obtain the full densification. The W-10wt.%Cu produced by hydrogen reduction showed the higher interparticle friction than the simple mixed W-10wt%Cu because of the W agglomerates. In the dilatometric analysis the W-10wt.%Cu prepared from the $W-CuCl_2$was largely shrank by heating up $1400^{\circ}C$ at the constant heating rate of $5^{\circ}C$/min. The possibility of application of metal injection molding (MIM) was also investigated for mass production of the complex shaped W-Cu parts in semiconductor devices. The relationship between the temperature of molding die and the pressure of injection molding was analyzed and the heating up stage of 120-$290^{\circ}C$ in the debinding process was controlled for the most suitable MIM condition.

  • PDF

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권4호
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

AN EXPERIMENTAL STUDY ON AN ELECTROCHEMICAL REDUCTION OF AN OXIDE MIXTURE IN THE ADVANCED SPENT-FUEL CONDITIONING PROCESS

  • Jeong, Sang-Mun;Park, Byung-Heung;Hur, Jin-Mok;Seo, Chung-Seok;Lee, Han-Soo;Song, Kee-Chan
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.183-192
    • /
    • 2010
  • An electrochemical reduction of a mixture of metal oxides was conducted in a LiCl molten salt containing 3 wt% $Li_2O$ at $650^{\circ}C$. The oxide reduction was carried out by applying a current to an electrolysis cell, and the $Li_2O$ concentration was analyzed during each run. The concentration of $Li_2O$ in the electrolyte bulk phase gradually decreases according to Faraday's law due to a slow diffusion of the $O^{2-}$ ions. A hindrance effect of the unreduced metal oxides was observed for the reduction of the uranium oxide. Cs, Sr, and Ba of high heat-load fission products were diffused into and accumulated in the salt phase as predicted with thermodynamic consideration.