• 제목/요약/키워드: metal nanoparticles

검색결과 449건 처리시간 0.026초

Size Tailored Nanoparticles of ZrN Prepared by Single-Step Exothermic Chemical Route

  • Lee, Sang-Ki;Park, Kyung-Tae;Ryu, Hong-Youl;Nersisyan, Hayk H.;Lee, Kap-Ho;Lee, Jong-Hyeon
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.243-248
    • /
    • 2012
  • ZrN nanoparticles were prepared by an exothermic reduction of $ZrCl_4$ with $NaN_3$ in the presence of NaCl flux in a nitrogen atmosphere. Using a solid-state combustion approach, we have demonstrated that the zirconium nitride nanoparticles synthesis process can be completed in only several minutes compared with a few hours for previous synthesis approaches. The chemistry of the combustion process is not complex and is based on a metathesis reaction between $ZrCl_4$ and $NaN_3$. Because of the low melting and boiling points of the raw materials it was possible to synthesize the ZrN phase at low combustion temperatures. It was shown that the combustion temperature and the size of the particles can be readily controlled by tuning the concentration of the NaCl flux. The results show that an increase in the NaCl concentration (from 2 to 13 M) results in a temperature decrease from 1280 to $750^{\circ}C$. ZrN nanoparticles have a high surface area (50-70 $m^2/g$), narrow pore size distribution, and nano-particle size between 10 and 30 nm. The activation energy, which can be extracted from the experimental combustion temperature data, is: E = 20 kcal/mol. The method reported here is self-sustaining, rapid, and can be scaled up for a large scale production of a transition metal nitride nanoparticle system (TiN, TaN, HfN, etc.) with suitable halide salts and alkali metal azide.

Recycling of Sintered Nd-Fe-B Magnets Doped with PrNd Nanoparticles

  • Zhang, Xuefeng;Liu, Fei;Liu, Yanli;Ma, Qiang;Li, Yongfeng;Zhao, Qian;Wang, Gaofeng;Li, Zhubai
    • Journal of Magnetics
    • /
    • 제20권2호
    • /
    • pp.97-102
    • /
    • 2015
  • The waste of sintered Nd-Fe-B magnets was recycled using the method of dopingPrNd nanoparticles. The effect of PrNd nanoparticle doping on the magnetic properties of the regenerated magnets has been studied. As the content of the PrNd nanoparticles increases, the coercivity increases monotonically, whereas both the remanence and the maximum energy products reach the maximum values for 4 wt% PrNd doping. Microstructural observation reveals that the appropriate addition of PrNd nanoparticles improves the magnetic properties and refines the grain. Domain investigation shows that the self-pinning effect of the rare earth (Re)-rich phase is enhanced by PrNd nano-particle doping. Compared to the magnet with 4 wt% PrNd alloy prepared using the dual-alloy method, the regenerated magnet doped with the same number of PrNd nanoparticles exhibits better magnetic properties and a more homogeneous microstructure. Therefore, it is concluded that PrNd nanoparticle doping is an efficient method for recycling the leftover scraps of Nd-Fe-B magnets.

공기와 물이 형성하는 계면에서 발생하는 유기적으로 기능화된 은 나노 입자들의 2차원 조립 (Two-dimensional Assembly of Organically Functionalized Ag Nanoparticles at Air-water Interface)

  • 정성욱
    • 공업화학
    • /
    • 제28권1호
    • /
    • pp.125-131
    • /
    • 2017
  • 본 연구에서는 유기적으로 기능화된 은 나노 입자들은 공기와 물이 형성하는 계면에서 자발적 조립 과정을 통해 새로운 2차원 상부 구조들(superstructures)을 생성하는 것을 발견하였다. 상부 구조의 분석은 금속 나노 입자의 심형과 입자계면에 결합된 유기 분자의 크기를 바꿈으로써 입자 간 특징적 상호 작용(characteristic inter-particle interaction)을 조절할 수 있고 이들 사이의 미묘한 상호 작용(subtle interplay)을 통해 은 나노 입자의 2차원 조립이 발생함을 시사한다. 본 연구를 통해 발견한 새로운 구조들은 기능성 나노 소재, 촉매 및 소자 응용 분야에 매우 중요한 잠재적 용도가 있을 것이라 사료된다.

A Novel Deposition Method of PLGA Nanoparticles on Coronary Stents

  • Joo, Jae-Ryang;Nam, Hye-Yeong;Nam, So-Hee;Baek, In-Su;Pakr, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1085-1087
    • /
    • 2009
  • Bare metal stents which were used to treat coronary artery disease have several biochemical problems. Polymerbased drug-eluting stents (DES) have opened up a new paradigm in the treatment of in-stent restenosis. Many studies and research programmes have proved that DES can prevent restenosis. In our study, paclitaxel-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles have been deposited along the three dimensional scaffold of coronary stents by a method using self-assembling properties of colloidal particles. We found that the nanoparticles were deposited uniformly and closely packed. The amount of paclitaxel was easily controlled by the drug content of the nanoparticles and the deposition count.

나노입자의 구조와 모양, 담지체 및 하이브리드 시스템 제어를 통한 직접메탄올 연료전지의 촉매 개발 (Catalyst Enhanced by Controlling Structure and Shape of Nanocrystals, Support Materials, and Hybrid System in DMFCs)

  • 이영욱;신태호
    • 세라미스트
    • /
    • 제22권2호
    • /
    • pp.189-197
    • /
    • 2019
  • Direct methanol fuel cells (DMFCs) have found a wide variety of commercial applications such as portable computer and mobile phone. In a fuel cell, the catalysts have an important role and durability and efficiency are determined by the ability of the catalyst. The activity of the catalyst is determined by the structure and shape control of the nanoparticles and the dispersion of the nanoparticles and application system. The surface energy of nanoparticles determines the activity by shape control and the nanostructure is determined by the ratio of bi- and tri-metals in the alloy and core-shell. The dispersion of nanoparticles depends on the type of support such as carbon, graphen and metal oxide. In addition, a hybrid system using both optical and electrochemical device has been developed recently.

Exceptionally stable green-synthesized gold nanoparticles for highly sensitive and selective colorimetric detection of trace metal ions and volatile aromatic compounds

  • Singh, Karanveer;Kukkar, Deepak;Singh, Ravinder;Kukkar, Preeti;Kim, Ki-Hyun
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.33-41
    • /
    • 2018
  • The manuscript reports synthesis of exceptionally stable gold nanoparticles (GNPs) using Momordica charantia fruit extract. The synthesis approach was optimized by refining three experimental variables including source of the fruit extract (peel, seed, and seed coat), pH of the solution, and temperature of the reaction medium. As synthesized GNPs showed excellent stability against various thiolated compounds (e.g., thioglycolic acid, thiourea, ${\text\tiny{L}}-cystine$, 1-dodecanethiol, and cysteamine hydrochloride). Moreover, these nanoparticles showed distinctive colorimetric responses against $Cd^{2+}$ and thiophenol (TP) from their potential interferences. The limit of detection (LOD) values for $Cd^{2+}$ and TP were determined as 0.186 and $0.154{\mu}M$, respectively.

근적외선 센서를 위한 Ag2Se 나노 입자 합성 및 광전기적 특성 (Synthesis and Optoelectronic Characteristics of Ag2Se Nanoparticle for NIR Sensor Application)

  • 장재원
    • 센서학회지
    • /
    • 제28권4호
    • /
    • pp.266-269
    • /
    • 2019
  • In this study, $Ag_2Se$ nanoparticles were synthesized by employing the colloidal method. The synthesized $Ag_2Se$ nanocrystals were spherical in shape with a diameter of approximately 4 nm and had high crystallinity. These attributes of $Ag_2Se$ nanocrystals were determined through images obtained from a high resolution transmission electron microscope. Thin films comprising the synthesized $Ag_2Se$ nanoparticles had an optical band gap of 1.5 eV. Furthermore, fabricated NIR sensors comprising $Ag_2Se$ nanoparticles exhibited a high detectivity of $5.5{\times}10^9$ Jones (above $1{\times}10^9$) at room temperature, leading to low power consumption

Nanoparticles Modified With Cationic Thiol Surfactant as Efficient Inhibitors for the Corrosion of Carbon Steel

  • Azzam, Eid M.S.;Sami, Radwa M.;Alenezi, Khalaf M.;El Moll, Hani;Haque, A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.308-316
    • /
    • 2021
  • In this work, we report synthesis, characterization and corrosion inhibition properties of cationic thiol surfactant-capped silver (SC-Ag-NPs) and gold (SC-Au-NPs) nanoparticles. SC-Ag-NPs and SC-Au-NPs were characterized using regular techniques include TEM. Corrosion study was carried out using carbon steel (CS) in 3.5% NaCl aqueous solution and characterized using multiple electrochemical techniques. Our results suggest that the paint containing SC-Ag-NPs and SC-Au-NPs endow efficient corrosion protection to the CS. Especially, SC-Au-NPs based paint form a stronger barrier between the metal and the corrosive ions, leading to better inhibition properties.

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok;Shon, Dayeon Judy;Truong, Van;Gavia, Diego J.;Torrico, Raul;Abate, Yohannes
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.57-67
    • /
    • 2014
  • This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.