• Title/Summary/Keyword: metal electrode

Search Result 1,297, Processing Time 0.03 seconds

A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(I) (산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(I))

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.49-60
    • /
    • 2009
  • Fabrication and oxidants formation of 1 and 2 component metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru, Pt, Sn, Sb and Gd) were used for the 1 and 2 component electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1 h. The removed RhB per 2 min and unit W for one component electrode decreased in the following sequences: Ru/Ti>Sb/Ti>Pt/Ti>Gd/Ti>Sn/Ti. The concentration of oxidants generated in 1 and 2 component electrodes was in the order of: $ClO_2$> free Cl>$H_2O_2>O_3$. OH radical was not generated from in entire one and two component electrodes. RhB degradation rate and generated oxidants of the Ru-Sn=9:1 electrode was higher than that of the two component electrode. The exact relationship between the removal of RhB and the generated oxidants concentration was not obvious. However, it was assumed that electrode with high RhB decolorization had high oxidant concentration.

A Study of Interface Layer on CdZnTe Radiation Sensor for Potable Isotope Identifier (이동형 핵종 분석 장치용 CZT 반도체 검출기의 완충전극에 대한 연구)

  • Cho, Yun Ho;Park, Se-Hwan;Kim, Yong Kyun;Ha, Jang Ho
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.95-99
    • /
    • 2011
  • The electrical and mechanical properties of electrode for radiation detection are very important. In general, Au electrode and CZT crystal are combined to form ohmic contacts, and the best energy resolution is shown at the Au electrode. The metal contacts are fabricated by electroless deposition method, sputtering deposition method and thermal evaporation method. The electrode fabrication is easy with use of the thermal evaporation method, while an adhesive strength is weak. Thus interface materials such as Ag, Al and Ni were investigated to overcome defects generated by the this method. The thickness of the interface material between the Au electrode and the CZT crystal was 100 Angstroms, the Au electrode with thickness of 400 Angstroms was deposited. The Al+Au electrode is shown that the results of current-voltage and radiation response are similar to results of Au electrode.

A Study on the Interface Properties of Metal/Organic Films/Metal (Metal/Organic Films/Metal에서 계면특성에 관한 연구)

  • Song, Jin-Won;Cho, Su-Young;Choi, Young-Il;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.723-726
    • /
    • 2002
  • We give pressure stimulation into organic thin films and then manufacture a device under the accumulation condition that the state surface pressure is 10[mN/m]. In processing of a device manufacture, we can see the process is good from the change of a surface pressure for organic thin films and transfer ratio of area per molecule. The structure of manufactured device is Au/Poly-$\gamma$ Benzyl $_D$-Glutamate/Al; the number of accumulated layers is 1, 3, 5 and 7. Also, we then examined of the MIM device by means of I-V. The I-V characteristic of the device is measured from 0 to +2[V]. We determined electrochemical measurement by using cyclic voltammetry with a three-electrode system. LB film accumulated by monolayer on an ITO. In the cyclicvoltammetry, An Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode measured in $LiBF_4$ solution, stable up to 0.9V vs. Ag/AgCl.

  • PDF

Electric Field-induced Charge Transfer of (Bu4N)2[Ru(dcbpyH)2-(NCS)2] on Gold, Silver, and Copper Electrode Surfaces Investigated by Means of Surface-enhanced Raman Scattering

  • Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1405-1409
    • /
    • 2007
  • The potential-induced charge transfer of the dye (Bu4N)2[Ru(dcbpyH)2-(NCS)2] (N719) on Au, Ag, and Cu electrode surfaces has been examined by surface-enhanced Raman scattering (SERS) in the applied voltage range between 0.0 and ?0.8 V. N719 is assumed to have a relatively perpendicular geometry with its bipyridine ring on the metal surfaces. A strong appearance of the carboxylate band at ~1370 cm-1 indicates that the carboxyl group will likely be deprotonated on the metal surfaces. As the electric potential is shifted from ?0.8 to 0.0 V, the ν (NCS) band at ~2100 cm-1 on the electrode surfaces appears to undergo a shift in frequency and intensity change. This indicated that the charge transfer between the dye and metal electrode surfaces had occurred. Electric-field-dependent charge transfer differs somewhat depending on the type of metal surfaces as suggested from the dissimilar frequency positions of the ν (NCS) band.

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV

  • Yoon, Jang-Hee;Yang, Jee-Eun;Kim, Jong-Phil;Bae, Jong-Seong;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • The simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in aqueous medium using a BDD electrode with DPASV is described. XPS was used to characterize the chemical states of trace metal ions deposited on the BDD electrode surface. Experimental parameters that affect response, such as pH, deposition time, deposition potential, and pulse amplitude were carefully optimized. The detection limits for Cd (II), Pb (II), Cu (II), and Hg (II) ions were 3.5 ppb, 2.0 ppb, 0.1 ppb and 0.7 ppb, respectively. The application of the BDD electrode on the electrochemical pretreatment for the simultaneous metal detection in the dye waste water was also investigated.

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Improvement of source-drain contact properties of organic thin-film transistors by metal oxide and molybdenum double layer

  • Kim, Keon-Soo;Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Hyung-Jin;Lee, Dong-Hyuck;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The contact resistance between organic semiconductor and source-drain electrode in Bottom Contact Organic Thin-Film Transistors (BCOTFTs) can be effectively reduced by metal oxide/molybdenum double layer structure; metal oxide layers including nickel oxide (NiOx/Mo) and moly oxide(MoOx) under molybdenum work as a high performance carrier injection layer. Step profiles of source-drain electrode can be easily achieved by simultaneous etching of the double layers using the difference etching rate between metal oxides and metal layers.

  • PDF

A Study of Power Output Characteristics for the Magnesium Metal Fuel Cell (마그네슘 금속연료전지의 출력특성에 관한 연구)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.212-217
    • /
    • 2014
  • The electric power output characteristics of magnesium fuel cell were investigated with regard to internal resistance. A equivalent circuit with the series-connected three internal resistance was introduced to analyze of the response to change of power. The power output analysis was employed in order to investigate the effect of internal resistances for the electrolyte concentration, air electrode area, Mg electrode area and distance between the electrodes. It was confirmed that internal resistance is generated by the electrolyte, air electrode and metal electrode, then those Internal resistances had a significant effect on the power output decrease. The power output was a maximum when the load resistance maches the internal resistance of the magnesium fuel cell. The fuel efficiency was only 50% at maximum power output. Higher fuel efficiency was achieved when the load resistance is greater than the internal resistance.

Electrode Formations for the External Electrode Fluorescent Lamps

  • Kim, Young-Mi;Kim, Sung-Jung;Kwon, Nam-Ok;Lee, Yong-Gon;Choi, Eun-Ha;Cho, Guang-Sup;Kim, Bong-Soo;Kang, June-Gill
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.533-535
    • /
    • 2002
  • Electrode formation methods such as a metal-taping, a electrolytic plating, and a metal-paste melt-bonding, are introduced for an external electrode fluorescent lamp. The characteristics of luminance and efficiency for various external electrode types have been investigated.

  • PDF