• Title/Summary/Keyword: metal desorption

Search Result 207, Processing Time 0.025 seconds

A Study on the Cycling Effects and the Hydrogen Absorption-Desorption Characteristics Of Metal Hydrides (DiNi5-H2 system) (금속수소화물(DiNi5-H2 system)의 수소 흡수-방출 특성과 반복 효과에 관한 연구)

  • Kim, Youn-Sang;Zhoh, Choon-Koo
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.30-34
    • /
    • 1990
  • This paper summarizes fundamental research on a metal hydrides for the development of new energy. We made a study of the characteristics of the hydrogen absorption-desorption of $DiNi_5$ alloys. As a result, we found that the maximum amount of the hydrogen absorption of $DiNi_5$ alloys (the maximum in the absorption equilibrium pressure section) was H/M=1.04 at $30^{\circ}C$. The hysteresis was the smallest at $30^{\circ}C$. The capability of the hydrogen absorption-desorption was excellent. The number of cycles of the hydrogen absorption-desorption was about 9000 times at $30^{\circ}C$. We found also that the rate of the hydrogen desorption was the largest at $40^{\circ}C$.

  • PDF

The change of alkali-metals/Si(111) surface structure and Investigation of desorption energy (알칼리금속/Si(111)표면에서의 구조변화 및 탈착에너지 조사)

  • Kwak, Ho-Weon;Jung, Sung-Min
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2003
  • The effects of adsorption and desorption of alkali-metals on Si(111) surface were investigated by using AES and RHEED-system. The adsorption system is a fundamental interest because of its unique electronic properties such as measurement of work function change, adatom-core level shift. It was found that the growth node of K on Si(111) surface was layer by layer growth and the saturation coverage was 2.0ML at room temperature. Superstructure changes on Si(111) surface according to the alkali-metal thickness and substrate temperatures were accurately defined. By applying the isothermal desorption method, the desorption energies of Li/Si(111) and K/Si(111) surfaces was measured. On Li/Si(111) and K/Si(111) surfaces, the desorption energies were 3.07 eV, 2.19 eV respectively.

  • PDF

Monitoring of III-V semiconductor surface by In-situ Surface PhotoAbsorption

  • Kim, T. J.;Kim, Y. D.;H. Hwang;E. Yoon
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.79-82
    • /
    • 2003
  • We present the investigation on P- and As-desorption process from the (001) InP surface in metal organic chemical vapor deposition using surface photoabsorption (SPA). The monochromatic SPA signal showed rapid initial increase to reach In-stabilized surface value after $PH_3$ was turned off, but in case of As-desorption, the signal showed clear existence of a metastable state after the $AsH_3$ was turned off. The SPA spectra at each stable surfaces were taken to confirm the interpretation. This result indicates that the As-desorption process should be understood as a two-step process, in contrast to P-desorption of one-step process.

A Study of Hydrogen Desorption in Dy2Co7-H System (Dy2Co7-H System에서 수소(水素)의 Desorption에 관한 연구(硏究))

  • Nam, ln-Tak
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.47-51
    • /
    • 1981
  • A Kinetic model of desorption of hydrogen in $Dy_2Co_7-H$ system has been suggested and rate equation of each step of the model has been compared with experimental results. The reat controlling step was hydrogen recombination in metal surface. The activation energy of over-all reaction was about 23kcal/mole.

  • PDF

Biosorption of Copper by Immobilized Biomass of Pseudomonas stutzeri

  • Cho, Ju-Sik;Hur, Jae-Seoun;Kang, Byung-Hwa;Kim, Pil-Joo;Sohn, Bo-Kyoon;Lee, Hong-Jae;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.964-972
    • /
    • 2001
  • The kinetics of copper ion biosorption by Pseudomonas stutzeri cells immobilized in alginate was investigated. During the first few minutes of the metal uptake, the copper biosorption was rapid and then became progressively slower until an equilibium was rapid, and then became progressively slower until an equilibrium was reached. At a biomass concentration of 100g/l, the copper biosorption reaction reached approximately 90% of the equilibrium position within 30 min. A Freundich-type adsorption isotherm model was constructed based on kinetics with different amounts of biomass. When using this model, the experimental values only agreed well with the predicted values in a solution containing less than 200 mg/l Cu(II). Desorption of the bound copper ions was achieved using electrolytic solutions of HCl, $H_2SO_4$, EDTA, and NTA (0.1 or 0.5 M). Metal desorption with 0.1 M NTA allowed the reuse of the biosorbent for at least ten consecutive biosorption/desorption cycles, without an apparent decrease in its metal biosorption capability. A packed-bed column reactor of the immobilized biomass removed approximately 95% of the metal in the first 30 liter of wastewater [containing 100 mg/l Cu(II)] delivered at a rate of 20 L/day, and, thereafter, the rate gradually decreased.

  • PDF

Catalyst-aided Regeneration of Amine Solvents for Efficient CO2 Capture Process

  • Bhatti, Umair H.;Sultan, Haider;Cho, Jin Soo;Nam, Sungchan;Park, Sung Youl;Baek, Il Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.8-12
    • /
    • 2019
  • Thermal amine scrubbing is the most advanced CO2 capture technique but its largescale application is hindered due to the large heat requirement during solvent regeneration step. The addition of a solid metal oxide catalysts can optimize the CO2 desorption rate and thus minimize the energy consumption. Herein, we evaluate the solvent regeneration performance of Monoethanolamine (MEA) and Diethanolamine (DEA) solvents without and with two metal oxide catalysts (TiO2 and V2O5) within a temperature range of 40-86℃. The solvent regeneration performance was evaluated in terms of CO2 desorption rate and overall amount of CO2 desorbed during the experiments. Both catalysts improved the solvent regeneration performance by desorbing greater amounts of CO2 with higher CO2 desorption rates at low temperature. Improvements of 86% and 50% in the CO2 desorption rate were made by the catalysts for MEA and DEA solvents, respectively. The total amount of the desorbed CO2 also improved by 17% and 13% from MEA and DEA solvents, respectively. The metal oxide catalyst-aided regeneration of amine solutions can be a new approach to minimize the heat requirement during solvent regeneration and thus can remove a primary shortfall of this technology.

Removal Characteristics of Arsenic from Abandoned Metal Mining Tailings by Electrokinetic Technique (동전기법에 의한 폐 중금속광산 퇴적토 내의 비소제거 특성)

  • Shin Hyun-Moo;Yoon Sam-Seok
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.279-286
    • /
    • 2006
  • Electrokinetic technique was considered in removing arsenic from the abandoned mining tails. In order to estimate the removal characteristics of arsenic, the sequential extraction analysis and desorption experiment were carried out prior to the application of electrokientic process. The result of sequential extraction analysis indicated that the water soluble and exchangeable fraction, easily leachable to ground water, were very low as much as about 2.5% and the fraction except residual (38.3%), possibly extractable under very acidic or alkalic environment, was about 59%. In the result of desorption test using four different kinds of electrolytes, the mixture of citric acid and sodium dodecyl sulfate (SDS) showed the highest desorption efficiency as much as 77.3%. The removal efficiencies of arsenic from mining tailings by electrokinetic process under the different electrolyte environments were slightly low and resulted in the following order: citric acid + SDS (18.6%) > 0.1 $NHNO_3$ (8.1%) > HAc (7.4%) > Distilled water(6.6%). Also, arsenic in soil matrix was moved favorably in the direction of anodic rather than cathodic region, which is opposite trend with cationic metal ions generally existing in soil, because anionic form of arsenic is dominated in acidic soil caused by the movement of acid front form anode.

Hydrogen Embrittlement Resistance and Diffusible Hydrogen Desorption Behavior of Multipass FCA Weld Metals (다층 FCA 용착금속의 수소취성 저항성 및 확산성 수소 방출 거동)

  • Yoo, Jaeseok;Xian, Guo;Lee, Myungjin;Kim, Yongdeok;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.112-118
    • /
    • 2013
  • In this study, constant loading test (CLT) was performed to evaluate the hydrogen embrittlement resistance for multipass FCA weld metals of 600MPa tensile strength grade. The microstructures of weld metal-2 having the smallest carbon equivalent (Ceq=0.37) consisted of grain boundary ferrite and widmanstatten ferrite in the acicular ferrite matrix. The weld metal-1 having the largest Ceq=0.47, showed the microstructures of grain boundary ferrite, widmanstatten ferrite and the large amount of bainite (vol.%=19%) in the acicular ferrite matrix. The weld metal-3 having the Ceq=0.41, which was composed of grain boundary ferrite, widmanstatten ferrite, and the small amount of bainite (vol.%=9%) in the acicular ferrite matrix. Hydrogen desorption spectrometry (TDS) used to analyze the amount of diffusible hydrogen and trapping site for the hydrogen pre-charged specimens electrochemically for 24 hours. With increasing the current density of hydrogen pre-charging, the released amount of diffusible hydrogen was increased. Furthermore, as increasing carbon equivalent of weld metals, the released diffusible hydrogen was increased. The main trapping sites of diffusible hydrogen for the weld metal having a low carbon equivalent (Ceq=0.37) were grain boundaries and those of weld metals having a relatively high carbon equivalent (Ceq: 0.41~0.47) were grain boundaries and dislocation. The fracture time for the hydrogen pre-charged specimens in the constant loading test was decreased as the carbon equivalent increased from 0.37 to 0.47. This result is mainly due to the increment of bainite that is vulnerable to hydrogen embrittlement.

Studies on the Sorption Behavior of Some Metal Ions using XAD-16-Chromotropic Acid Chelating Resin (XAD-16-Chromotropic Acid 킬레이트 수지를 이용한 몇 가지 금속이온의 흡착거동에 관한 연구)

  • Lee, Won;Kim, Mi-Kyoung;Kim, In-Whan;Kim, Jun-Yong;Kim, Jung-Sook
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.454-463
    • /
    • 2004
  • The sorption behavior of some metal ions on XAD-16-CTA chelating resin was investigated by batch method. The sorption of chelating resin was highly selective for Hf(IV), Zr(IV) and Th(IV) at pH 3.0 ~ 6.0 and the maximum sorption capacity of Zr(IV) ion was 0.81 mmol/g. It was successfully applied to the separation of several rare metal ions from mixed metal solutions by using CDTA, EDTA, NTA and $NH_4F$ as masking agent. The elution order of metal ions obtained from breakthrough capacity and the overall capacity at pH 4.0 was Zr(IV)>Th(IV)>Hf(IV)>U(VI)>Cu(II)>In(III)>Pb(II). Desorption characteristics for metal ions was investigated with desorption agents such as HCl, $HNO_3$, $HClO_4$. 2 M HCl showed high desorption efficiency. Th(IV) ion can be successfully separated from mixed metal ions by using XAD-16-CTA cheating resin.

1-D and 2-D Metal Oxide Nanostructures

  • Son, Yeong-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.87-88
    • /
    • 2012
  • Metal oxide nanostructures have been applied to various fields such as energy, catalysts and electronics. We have freely designed one and two-dimensional (1 and 2-D) metal (transition metals and lanthanides) oxide nanostructures, characterized them using various techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction crystallography, thermogravimetric analysis, FT-IR, UV-visible-NIR absorption, Raman, photoluminescence, X-ray photoelectron spectroscopy, and temperature-programmed thermal desorption (reaction) mass spectrometry. In addition, Ag- and Au-doped metal oxides will be discussed in this talk.

  • PDF