• Title/Summary/Keyword: metal catalyst

Search Result 795, Processing Time 0.04 seconds

Carbon Deposition on Nickel Catalyst for Pre-reforming of Propane (니켈 촉매를 이용한 프로판 예개질 반응의 탄소침적에 대한 연구)

  • Kim, Sun-Young;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.487-490
    • /
    • 2008
  • Temperature programmed oxidation (TPO) is used to characterize coke species deposited on commercial nickel catalyst, C11-PR during propane pre-reforming. Propane pre-reforming performed under various condition, S/C from 1.5 to 2.5 and temperature from $350^{\circ}C$ to $450^{\circ}C$. There are three kinds of coke species detected by TPO: (i) reactive coke, (ii) coke deposited on metal site and (iii) coke deposited on acid support. Coke deposited on metal and support are minimized although reactive coke is generated at temperature of $400^{\circ}C$ and S/C of 2.0. Reactive coke is expected to remove easily below temperature of $200^{\circ}C$. Therefore, optimized pre-reforming condition for propane is $400^{\circ}C$ and S/C of 2.0.

  • PDF

Non-Pt transition metal electrode catalyst for Oxygen Reuction Reaction of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지의 산소환원반응을 위한 비백금계 전이금속 전극 촉매)

  • Kim, Jy-Yeon;Lee, Sang-Beom;Park, Kyung-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.383-385
    • /
    • 2009
  • 비백금계 코발트 전이금속 촉매를 탄소지지체에 담지한 뒤, 암모니아 분위기에서 $500^{\circ}C$에서 3시간 동안 열처리하는 과정을 통해 코발트 질화물 촉매를 제조했다. 제조된 촉매들의 구조와 형태를 각각 XRD, HE-TEM등을 통해 분석하였고, 전위 측정기를 이용한 CV, LSV 결과로부터 촉매의 전기화학적 산소 환원특성을 분석하여, 기존의 연료전지 양극 촉매로 사용되는 고가의 백금촉매를 대체하기 위한 비백금계로서의 가능성을 확인하였다.

  • PDF

Middle distillate production by the hydrocracking of F-T wax (F-T wax의 수소첨가분해반응에 의한 middle distillate 제조)

  • Jeong, Heon-Do;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.873-875
    • /
    • 2009
  • Middle distillate was produced by the hydrocracking of F-T wax on the zeolite catalysts. Novel metal loaded zeolite catalysts had good performance for hydrocracking of F-T wax. 2 wt.% Platinum loaded H-Y zeolite catalyst showed the highest selectivity of middle distillate and conversion of F-T wax. H-Y zeolite had more strong acidity site and large pore than that of another zeolite catalyst. So, H-Y zeolilte catalyst showed the best activity for hydrocracking of F-T wax.

  • PDF

Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions (다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매)

  • Jang, Jeonghee;Sharma, Monika;Sung, Hukwang;Kim, Sunpyo;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.

Preperation of catalyst having high activity on oxygen reduction (저온형 연료전지용 산소의 고활성 환원 촉매 제조)

  • 김영우;김형진;이주성
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1992.11a
    • /
    • pp.39-40
    • /
    • 1992
  • This paper dealt with the manufacturing of binary alloy catalyst and showed simple electrochemical method for determing catalytic activity of oxygen reduction in acid or alkaline electrolyte. The catalyst was prepared by impregnating transition metal salts on platinum or silver particles adsorbed before on carbon paper substrate. The electrochemical characteristics of the catalysts was investigated with carbon paper electrode or PTFE-boned porous electrode and then cathodic current densities and tafel slopes were compared. As a result, of all binary catalysts utilized in this work, Pt-Fe, Pt-Mo showed better oxygen reduction activity than pure platinum catalyst in acid electrolyte and Ag-Fe, Ag-Pt, and Ag-Ni-Bi-Ti catalyst did than pure silver catalyst in alkaline electrolyte. The current density of Pt-Fe electrode in acid electrolyte was one and half times higher than that of Pt electrode(~500mA/$\textrm{cm}^2$ at 0.7VvsNHE).

  • PDF

Development of a low NOx burner with honeycomb catalyst (저NOx형 하니컴 촉매버너의 개발)

  • Seo,Yong-Seok;Park, Byeong-Sik;Gang, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.822-829
    • /
    • 1997
  • A catalytic burner was studied which can be used as a heater operated in medium temperature. Noble metal catalysts (Pd/NiO) were used, which were supported on alumina wash coated honeycomb. The maximum heat-resisting temperature of the catalyst is about 900.deg. C. Combustion efficiency of the catalytic burner reached more than 99.5 % at the excess air ratio above 1.25.NOx emissions were lower than 1.0 ppm at all operation conditions. The operation condition for a stable catalytic combustion was obtained. It was dependent on the catalyst thickness. The 30 mm thick catalyst showed the widest stable catalytic combustion region. Stable catalytic combustion region of 30 mm thick catalyst was the operation condition of excess air ratio 1.25 - 1.75 and heat flux 7 - 14 kcal/h center dot cm$^{2}$.

A Study on the Transesterification Reaction Between Methyl Methacylate and Diethanolamine (메틸메타크릴레이트와 디에탄올아민과의 에스테르 교환반응에 관한 연구)

  • Sohn, Byoung-Chung;Park, Keun-Ho;Jeong, Soon-Wook;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.41-47
    • /
    • 1986
  • The transesterification reaction between diethanolamine and methyl-methacrylate was kinetically investigated in the presence of various metal acetate catalysts at $120^{\circ}C$. The quantity of methylmethacrylate reacted in the reaction flask was measured by gas chromatography and liquid chromatography, and the reaction rate was investigated by measuring of the quantity of products and reactnts under various catalysts. The transesterification reaction was carried out in the first order reaction kinetics with respect to the concentration of diethanolamine and methylmethacrylate, respectively. The apparent rate constant was found to obey first-order kinetics with respect to the concentration of catalyst. The linear relationship was shown between apparent rate constant and reciprocal absolute temperature, and by the Arrhenius plot, the activation energy has been calculated as 11.08 Kcal with zinc acetate catalyst, 17.99 Kcal without catalyst. The maximum reaction rate was appeared at the range of 1.4 to 1.6 of electronegativity of metal ions and instability constant of metal acetates.

Etching Treatment of Vertically Aligned Carbon Nanotubes for the Application to Biosensor (바이오센서로의 응용을 위한 수직 배열된 탄소나노튜브의 식각처리)

  • Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.594-598
    • /
    • 2008
  • The metal catalyst particles which there is as impurities on a tip part of carbon nanotube (CNT) are not good to apply it to a nano-electronic device. It was very important the opening of CNT-tip to fix a target bio material and a material to accept in CNT in a biosensor, so we performed $HNO_3$ wet etching to remove the metal catalyst particle which there was on a tip part of CNT grown up in the study and observed the opened CNT-tip with etching time. We synthesized the CNTs using a HF-PECVD method and choses the CNT length of 700 nm for the application of nano-electronic device such as a biosensor etc.. We observed the opened CNT-tip with wet etching times of $HNO_3$ (10, 30, 60 min). From the results, we observed that the CNT-tip was opened with the increase of wet etching time lively. In case of CNTs etched during 60 min, we confirmed that there was not the ratio of Ni included in CNTsI as catalyst. Conclusively, in the case of CNT etched for 60 minutes, it is completely good for application of a biosensor and, in addition, the metal-free CNTs will contribute to the application of other nanoelectronic devices.

Preparation of Pt/C catalyst for PEM fuel cells using polyol process (Polyol Process를 통한 PEM Fuel Cell용 Pt/C촉매 제조)

  • Oh, Hyoung-Seok;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.443-446
    • /
    • 2006
  • Carbon-supported Platinum (Pt) is the potential electro-catalyst material for anodic and cathodic reactions in fuel cell. Catalytic activity of the metal strongly depends on the particle shape, size and distribution of the metal in the porous supportive network. Conventional preparation techniques based on wet impregnation and chemical reduction of the metal precursors often do not provide adequate control of particle size and shape. We have proposed a novel route for preparing nano sized Pt colloidal particles in solution by oxidation of ethylene glycol. These Pt nano particles were deposited on large surface area carbon support. The process of nano Pt colloid formation involves the oxidation of solvent ethylene glycol to mainly glycolic acid and the presence of its anion glycolate depends on the solution pH. In the process of colloidal Pt formation glycolate actsas stabilizer for the Pt colloidal particle and prevents the agglomeration of colloidal Pt particles. These mono disperse Pt particles in carbon support are found uniformly distributed in nearly spherical shape and the size distribution was narrow for both supported and unsupported metals. The average diameter of the Pt nano particle was controlled in the range off to 3 nm by optimizing reaction parameters. Transmission electron microscopy, CV and RRDE experiments were used to compliment the results.

  • PDF

Vapor-phase Oxidation of Alkylaromatics over V/TiO2 and VSb/Al2O3 Catalysts: Effect of Alkali Metals

  • Yoon, Ji-Woong;Jhung, Sung-Hwa;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2405-2408
    • /
    • 2007
  • Oxidation of alkylaromatics including toluene and p-methoxytoluene has been carried out over alkali metal (AM)-containing catalysts such as AM-V/TiO2 and AM-VSb/Al2O3 in vapor-phase using oxygen as an oxidant. The selectivity for partial oxidations increases with incorporation of an alkali metal or with increasing the basicity of alkali metals (from Na to Cs), irrespective of the supports or reactants. However, the conversion is nearly constant or slightly decreasing with the addition of alkali metals in the catalyst. The increased selectivity may be related with the decreased acidity even though more detailed work is necessary to understand the effect of alkali metals in the oxidation. The AM-VSb/Al2O3 may be suggested as a potential selective catalyst for vapor-phase oxidations.