• Title/Summary/Keyword: metal analysis

Search Result 5,720, Processing Time 0.039 seconds

Composition Analysis and Thermodynamic Care for Replication of Ancient Metallic Type (고대 금속활자의 복제를 위한 성분분석과 열역학적 주의 점)

  • Kim, Ki-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • 'Jikjisimcheyocheal (Jikji afterwards)' is known as a first book printed by the metal type in the world. The metal type used for printing this book has not been found yet. To help for replicating the original metal type, it is required to investigate the composition analysis of the copied metal type. In this study, the composition analysis and thermodynamic care for replicating of ancient metal type was performed on the basis of an analytical reports concerned with the ancient metal type which made after Jikji printing. Metal types were made by remelting and casting of the mother alloy which came from a cast of a mixed metals in accordance with the composition revealed in the literatures. Change of composition during remelting of mother alloy and casting of metal was detected by the EDS analysis. The reasons for variation in composition were discussed by metallurgical and thermodynamic point of view, and a mixing ratio of metals to get the original composition of ancient metal type is suggested. Some attention should be paid on mixing, melting and casting of metals to get an objected composition for copy of ancient metal type.

Investigation on Metal Transfer in GMA Welding through Dimensional Analysis (차원 해석을 통한 GMA 용접의 금속이행 현상에 관한 분석)

  • 최상균;유중돈
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.62-70
    • /
    • 1999
  • Since various parameters including the welding conditions and material properties are involved in metal transfer, it is difficult to figure out the effects of each parameter. In this study, dimensional analysis in performed to reduce the number of the parameters and to reveal the effect of each parameter on metal transfer. Dimensionless parameters are derived based on the inertia force and surface tension, and their contributions on metal transfer are estimated by analyzing the calculated results using the volume of fluid (VOF) method. Among several dimensionless parameters, $N_{SE}(=$\mu$_{0}I^{2}/d_{w}${\gamma}$)$ which represents the ratio of the electromagnetic force to surface tension, is found to be appropriate to describe metal transfer and estimate the transition current. Predicted results of transition current and drop size are in reasonably good agreements with available experimental date which show the validity of proposed dimensional analysis.

  • PDF

Statistical Assessment on the Heavy Metal Variation in the Soils around Abandoned Mine(Case Study for the Samgwang Mine) (폐광산지역 토양 중금속원소들에 대한 통계학적 환경오염 특성평가)

  • Cho, Il-Hyoung;Chun, Suk-Young;Chang, Soon-Woong
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1451-1462
    • /
    • 2007
  • Heavy metal concentrations in the soil were investigated for the abandoned Samkwang metal mine, Cheongyang-Gun, Chungnam Province, Korea. The concentrations of heavy metal(As, Cd, Cu, Ni, Pb, Zn) were determined in mine soils collected at the abandoned mine sites to obtain a general classification and specification of the pollution in this highly polluted region. The results estimated with the normal test and basis statistic on the central tendency and variation showed that the distribution of heavy metal concentration had significantly different at the range of all locations. The range of spatial distribution on the relationship of heavy metal concentration and pH was $4.8{\sim}8.8$ and heavy metal concentration on the type of land use was highest in forest land, and also Ni and Zn in farm and rice field showed the high concentration. The distribution of heavy metal concentration on the depth of a soil showed that the metal concentrations in subsoil were higher than of those in surface soil, while the concentration of Cu and Ni had no significant difference on the depth of soil. Results from the correlation analysis using the data except the extreme and unusual data revel that Zn-Cd(r=0.867), Zn-As(r=0.797), Zn-Pb(r=0.764), Cu-Cd(r=0.673), Cu-As(r=0.614) and Zn-Ni(r=0.605) were the most important parameters in assessing variations of heavy metal in soil. To discriminate pattern differences and similarities among samples, principal factor analysis(PFA) and cluster analysis(CF) were performed using a correlation matrix. This study suggests that PFA and CF techniques are useful tools for identification of important heavy metal and parameters. This study presents the necessity and usefulness of multivariate statistical assessment of complex databases in order to get better information about the quality of soil and gives the basis information to clean up the abandoned mine sites.

Deformation Analysis of a Metal Mask for the Screen Printing of Micro Bumps (스크린 인쇄용 미세 범프 금속마스크의 변형특성 해석)

  • Lee, K.Y.;Lee, H.J.;Kim, J.B.;Park, K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.408-414
    • /
    • 2012
  • Screen printing is a printing method that uses a woven mesh to support an ink-blocking stencil by transferring ink or other printable materials in order to form an image onto a substrate. Recently, the screen printing method has applied to micro-electronic packaging by using solder paste as a printable material. For the screen printing of solder paste, metal masks containing a number of micro-holes are used as a stencil material. The metal mask undergoes deformation when it is installed in the screen printing machine, which results in the deformation of micro-holes. In the present study, finite element (FE) analysis was performed to predict the amount of deformation of a metal mask. For an efficient calculation of the micro-holes of the metal mask, the sub-domain analysis method was applied to perform FE analyses connecting the global domain (the metal mask) and the local domain (micro-holes). The FE analyses were then performed to evaluate the effects of slot designs on the deformation characteristics, from which more uniform and adjustable deformation of the metal mask can be obtained.

A Study on the 2-Layered Sheet Metal Forming Analysis and Applications in Automotive Exhaust Component (2-Layer 블랭크를 적용한 자동차 배기 부품의 박판 성형 해석 및 적용)

  • Roh G. T.;Jeong W. S.;Moon M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • The shell part is made of 2-layered blank because of functional requirements. To investigate the draw formability in this kind of part, the 2-layered sheet metal forming analysis process should be stipulated. First of all, treatment of contact with each blank must be considered to prevent the penetration on the each blank. Subsequently, applying the draw bead force is considered carefully because application of drawbead force for analysis is different with equivalent drawbead force. Formability as like crack, neck and wrinkles is estimated by FLD(Forming Limit Diagram) and thinning. A feasibility of the 2-layered sheet metal forming analysis process study is verified compare 2-layered sheet metal forming analysis with experimental results.

  • PDF

Numerical and Experimental Analysis of Hydroforming Process of Sheet Metal Pairs (박판페어를 이용한 하이드로포밍 공정의 수치적 및 실험적 해석)

  • Kim T. J.;Yang D. Y.;Han S. S.;Nam J. B.;Jin Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.50-53
    • /
    • 2001
  • Hydroforming process has become an effective manufacturing process because it can be adaptable to forming of complex structural components. Tube hydroforming has been successfully developed in the real industrial field by many researchers. However, there still remains the constraint about shape which can be manufactured by tube hydroforming. In order to improve this constraint of shape and formability of conventional sheet metal forming, hydroforming process of sheet metal pairs becomes an important technology. In the present work, the finite element analysis of hydroforming process of sheet metal pairs is presented. After basic study about experimental parameters based on numerical analysis, hydroforming process of sheet metal pairs is developed which uses hydraulic pressure as a main forming source.

  • PDF

Algorithm Development for Infiltration Control in Component Fabrication Process of Metal Matrix Composites and Their Evaluation (금속기복합재료의 부품 제조공정에 관한 함침제어알고리즘 개발 및 평가)

  • Kang, Chung-Gil;Yun, Kung-Sik
    • Journal of Korea Foundry Society
    • /
    • v.16 no.6
    • /
    • pp.523-536
    • /
    • 1996
  • This paper relates to fabrication processing analysis of metal matrix composites by the injection of liquid metal into a fibrous preforms. One dimensional heat transfer analysis during squeeze infiltration process of aluminum base composites has been studied. An analysis method was investigated for the temperature distribution, infiltration velocity and melt infiltration characteristics with the commercial preform with short fiber array. When molten metal is infiltrated in a fibrous preform with random orientation, phase transformation will be occurred in a region such as molten metal, solidified region, preform region and infiltration composites region. a mathematical modelling for a solidification phenomena in fabrication process of metal matrix composites using a squeeze infiltration technique was investigated by the basic relations for liquid metal into a fibrous preform. The temperature distribution of theoretical results was compared with experimental data.

  • PDF

Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System (DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석)

  • Lee, Taik-Min;Kang, Tae-Goo;Yang, Jeong-Soon;Jo, Jeong-Dai;Kim, Kwang-Young;Choi, Byung-Oh;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

The Vibration Analysis of Metal-Piezoceramic Laminated Thin Plates by Using a Equivalent Method (등가화 방법을 이용한 금속;압전 세라믹 적층평판의 진동해석)

  • 고영준;남효덕;장호경
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • An analysis of the free vibration for the metal-piezoceramic laminated thin plates is described. The purpose of this study is to develop a equivalent method for the free vibration analysis of metal-piezoce-ramic laminated thin plate which are not sysmmetric about the adhered layer and the piezoelectric effect. In order to confirm the validity of the vibration analysis, double Fourier sine series is used as a modal displacement function of a metal-piezoceramic laminated thin plate and applied to the free vibration analysis of the plate under various boundary conditions.

  • PDF

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF