• 제목/요약/키워드: metal activated carbon

검색결과 168건 처리시간 0.028초

Removal of aqueous heavy metals (Pb, Cu, Zn, Cd) by scoria from Jeju, Korea

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.380-383
    • /
    • 2004
  • Heavy metal release from wastewater is a serious environmental problem, and therefore, various wastewater treatment techniques have been developed. Among the techniques, sorption technique is most attractive. Considerable researches have been recently focused on finding out inexpensive sorbents, especially from various natural materials. In order to evaluate the applicability of the scoria taken from the Jeju Island, Korea to remove heavy metals (Pb, Cu, Zn, Cd) from aqueous solutions, equilibrium sorption experiments were conducted in this study. In equilibrium tests, powdered activated carbon (PAC), one of the most commonly used sorbents, was also tested to compare the effectiveness of the Jeju scoria with that of PAC. The Jeju scoria had larger adsorption capacity and affinity for metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) than PAC. The sorption parameters of the two sorbents were evaluated by using both the Langmuir and Freundlich isotherms, and the sorption data were better fitted to the Freundlich isotherm. In addition, the sorption behavior of metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) onto the scoria displayed a typical characteristic of the cation sorption. The removal of metal ions decreased at a lower pH condition due to competition with hydrogen ions for the sorption sites of Jeju scoria, while the removal increased at a high pH condition due to hydroxide precipitation.

  • PDF

소각재 용융슬래그를 이용한 중금속 흡착특성에 관한 연구 (A Study on Adsorption Characteristics of the Heavy Metals using Melting Slag of Incinerator Ash)

  • 유승철;김환기
    • 상하수도학회지
    • /
    • 제22권4호
    • /
    • pp.413-420
    • /
    • 2008
  • In order to utilize cinder melting slag as a filter media to control the quality of early rainwater, its environmental stability was verified by heavy metal elution experiment and improved by pre-treatment. Possibilities of improving its function as an absorbent was considered. Absorption characteristics of melting slag before and after the pre-treatment were analyzed by heavy metal equilibrium and stationary-phase column experiments, which in turn were analyzed by comparison experiment with activated carbon. As a result of heavy metal elution experiment, every metal item existed in a much lower amount than the criteria or was not detected, implying that there is no problem recycling it. Absorption equilibrium experiment showed that the time for pre-treatment melting slag to reach the equilibrium was reduced, while the absorbed amount was greatly increased. Stationary-phase column experiment assures us that the elimination rate was not changed much by influx rate, pH and the change in packing volume rate, indicating that this melting slag can be used not only as a filter media to control the quality of early rainwater but also in many areas of water-processing.

금속산업폐수의 재이용을 위한 물리화학적 전처리공정의 유기물 및 무기물제거 특성 평가 (Evaluation of Organics and Inorganics Removal of Physicochemical Pretreatment Processes for Reuse of Metal Industry Wastewater)

  • 하동환;정진영
    • 대한환경공학회지
    • /
    • 제35권3호
    • /
    • pp.226-232
    • /
    • 2013
  • 역삼투기반 금속산업폐수 물재이용시스템의 전처리공정을 선정하기 위해 연수화, 응집침전, 활성탄, 이온교환 및 중화 침전공정에 대한 무기물 및 유기물 제거특성을 조사하였다. 유기물제거를 위해 DOC중 친수성 및 소수성 유기물을 분류하였으며, 이를 이용하여 조합공정을 최적화하였다. 다양한 전처리공정 중에서 연수화는 금속산업 방류수에 존재하는 칼슘경도(1,201 mg/L as $CaCO_3$)를 93.4%제거함과 동시에 소수성유기물을 모두 제거하는 것으로 나타났다. 연수화 후에 응집침전공정을 연계할 경우, 방류수에 포함된 유기물 5.1 mg DOC/L을 1.6 mg DOC/L까지 저감할 수 있었다. 또한, 금속공정 원폐수를 대상으로 가성소다를 이용한 중화침전공정을 적용하였을 때, 수중경도를 유발하지 않으면서도 철과 총용존성고형물을 효과적으로 제거할 수 있는 것으로 나타났다.

Physicochemical properties and methane adsorption performance of activated carbon nanofibers with different types of metal oxides

  • Othman, Faten Ermala Che;Yusof, Norhaniza;Hasbullah, Hasrinah;Jaafar, Juhana;Ismail, Ahmad Fauzi;Nasri, Noor Shawal
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.82-89
    • /
    • 2017
  • In this study, composite PAN-based ACNFs embedded with MgO and $MnO_2$ were prepared by the electrospinning method. The resultant pristine ACNFs, ACNF/MgO and $ACNF/MnO_2$ were characterized in terms of their morphological changes, SSA, crystallinity and functional group with FESEM-EDX, the BET method, XRD and FTIR analysis, respectively. Results from this study showed that the SSA of the ACNF/MgO composite ($1893m^2g^{-1}$) is significantly higher than that of the pristine ACNFs and $ACNF/MnO_2$ which is 478 and $430m^2g^{-1}$, respectively. FTIR analysis showed peaks of 476 and $547cm^{-1}$, indicating the presence of MgO and $MnO_2$, respectively. The FESEM micrographs analysis showed a smooth but coarser structure in all the ACNFs. Meanwhile, the ACNF/MgO has the smallest fiber diameter ($314.38{\pm}62.42nm$) compared to other ACNFs. The presence of MgO and $MnO_2$ inside the ACNFs was also confirmed with EDX analysis as well as XRD. The adsorption capacities of each ACNF toward $CH_4$ were tested with the volumetric adsorption method in which the ACNF/MgO exhibited the highest $CH_4$ adsorption up to $2.39mmol\;g^{-1}$. Meanwhile, all the ACNF samples followed the pseudo-second order kinetic model with a $R^2$ up to 0.9996.

음식물류 폐기물 활성탄의 제조 및 중금속 흡착특성 (Heavy Metal Adsorption Characteristics and Produced of Food Waste Activated Carbon)

  • 이준희;이승철;주민;김지혜;이돈길
    • 한국환경과학회지
    • /
    • 제24권12호
    • /
    • pp.1601-1608
    • /
    • 2015
  • This study evaluates heavy metal(Cu and Cr) adsorption characteristics produced from food waste charcoal extracted in an optimal operation condition after analyzing activated charcoal of iodine adsorption and heavy metals that derived from an activation process of carbide by the developed by-products of food waste treatment facility using the methods from previous studies. As experiment apparatus, this study used a tube-shaped high temp furnace. The mixing ratio of by-products of food waste treatment facility, carbide, and activation component($ZnCl_2$) was 1:1. The experiment was proceeded as adjusting the activation temperature from 400 to $800^{\circ}C$ and activation time from 30 to 120 minutes. The optimal activation condition for iodine absorption was 90 minutes at $700^{\circ}C$ and by using the produced food waste charcoal, this study conducted an experiment on absorption of heavy metals (Cu and Cr) as changing pH of artificial wastewater and stirring time. As a result, pH 7 showed the highest heavy metal decontamination ratio and in terms of stirring time, it revealed balance adsorption after 10 minutes. This result can be particularly applied as basic data for recyclability of high concentration organic waste, by-products of food waste treatment facility, as an food waste charcoal.

Development and Evaluation of Impregnated Carbon Systems Against Iodine Vapours

  • Srivastava, Avanish Kumar;Saxena, Amit;Singh, Beer;Srivas, Suresh Kumar
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.274-279
    • /
    • 2007
  • In order to understand the breakthrough behaviour of iodine vapours on impregnated carbon systems, an active carbon, 80 CTC grade, $12{\times}30$ BSS particle size and $1104\;m^2/g$ surface area, was impregnated with metal salts such Cu, Cr, Ag, Mo and Zn, and an organic compound Triethylene diamine (TEDA) to prepare different carbon systems such as whetlerite, whetlerite/TEDA, whetlerite/KI/KOH and ASZMT. The prepared adsorbents along with active carbon were characterized for surface area and pore volume by $N_2$ adsorption at liquid nitrogen temperature. These carbon systems were compared for their CT (concentration X time) values at 12.73 to 53.05 cm/sec space velocities and 2 to 5 cm carbon column bed heights. The carbon column of 5.0 cm bed height and 1.0 cm diameter was found to be providing protection against iodine vapours up to 5.5 h at 3.712 mg/L iodine vapour concentration and 12.73 cm/sec space velocity. The study clearly indicated the adsorption capacities of carbon systems to be directly proportional to their surface area values. Dead layer with all the prepared carbon systems was found to be less than 2.0 cm indicating it to be minimum bed height to have protection against $I_2$ vapours. Effect of carbon bed height and flow rate was also studied. The active carbon showed maximum protection at all bed heights and flow rates in comparison to all other impregnated carbon systems, showing that only physical adsorption is responsible for the removal of iodine vapours.

제올라이트 및 알칼리금속을 이용한 실내용 저농도 $CO_2$ 흡착제의 성능 평가 (Evaluation for adsorption of low concentration of indoor $CO_2$ adsorption using zeolite and alkali metal)

  • 임윤희;이주열;차유정;박병현
    • 한국응용과학기술학회지
    • /
    • 제30권3호
    • /
    • pp.494-503
    • /
    • 2013
  • In this study, $CO_2$ adsorbent was produced for minimizing energy loss due to ventilation within the building. For improved selectivity about low concentration of $CO_2$ in multiple-use facilities, the ball type adsorbent was modified from a commercial zeolite, alumina, alkali metals and activated carbon with mixing LiOH, binder, and $H_2O$. We measured specific surface area, pore characteristic, and crystal structure of the modified adsorbent. Effects of alkalization on the absorptive properties of the adsorbents were investigated. Continuous column tests (2,000 ppm) and batch chamber tests ($4m^3$, 5,000ppm) showed that the modified adsorbent indicated about the selectivity of $CO_2$ more than 9.7% (0.613 mmol/g) compared with ordinary adsorbents and $CO_2$ removal efficiency of 88.8% within l hour, respectively. It was estimated that the modified adsorbent was applicable to indoor environments.

Recovery of Heavy Metals using Oxidized Undaria pinnatifida in Plating Wastewater

  • 박재연;전충;유영제
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.357-360
    • /
    • 2000
  • Biosorption process is an economic and potential process for metal sequestering from the water. The oxidized Undaria pinnatifida by nitric acid had high uptake capacity for heavy metals of 4 - 6 meq / g dry mass. For the application of oxidized Undaria pinnatifida, recovery of metal in plating wastewater was studied. The uptake capacity of the oxidized Undaria pinnatifida was high compared to the ion exchanger IR-120 plus. The treatment efficiency of chromium and copper in the wastewater was 85% In batch. Activated carbon was used to assist the recovery of water by removing organic matters of the wastewater.

  • PDF

반건식 반응기에서의 활성탄 혼합주입에 의한 소각로 배가스중의 유기 염소계 화합물의 제거 공정 연구 (Removal of Chlorinated Organic Compounds in Flue Gas by Activated Carbon Injection in a Semi-Drying Reactor)

  • 주창업;황재동;이조영;조철훈;신병철
    • 청정기술
    • /
    • 제6권2호
    • /
    • pp.121-127
    • /
    • 2000
  • 소각로 배가스중에는 분진, 산성가스, 중금속, 다이옥신 등의 여러 유해물질이 함유되어 있다. 이러한 유해가스 중의 다이옥신을 제거하기 위한 방법중의 하나인 활성탄의 흡착을 이용한 유해물질 제거 방법의 효율을 조사하였다. 다이옥신의 전구물질인 1,2-dichlorobenzene (o-DCB)를 사용하였으며 기존의 소각로에 추가 설비가 필요 없이 활성탄을 반건식 반응기에서 소석회와 함께 분무하고 백필터로 여과하는 공정에 대하여 반응기 운전 온도, atomizer r.p.m., 활성탄 양 변화에 대한 효율을 조사하였다. 실험결과 소석회와 활성탄 분무를 위한 atomizer의 rpm이 클수록, 즉 분무 입자 크기가 작을수록 제거 효율은 증가하였고 반건식 반응기에서의 배가스 유출온도는 백 필터의 유입온도에 준하여 결정하는 것이 타당하며 $145^{\circ}C$로 유지하는 것이 필요하였다. 또한 백필터에서의 제거효율이 반건식 반응기에서의 제거효율보다 높음을 알 수 있었다.

  • PDF

도금폐수처리를 위한 입상활성탄 유동 메디아 적용 유동상 멤브레인 여과기술의 적용가능성 평가에 관한 연구 (Study on Feasibility of Fluidized Bed Membrane Reactor with Granular Activated Carbon Particles as Fluidized Media to Treat Metal-plating Wastewater)

  • 장수민;권대은;김정환
    • 멤브레인
    • /
    • 제28권4호
    • /
    • pp.252-259
    • /
    • 2018
  • 실 산성 도금폐수를 입상활성탄(GAC)이 유동메디아로 첨가된 유동상 멤브레인 반응기를 이용하여 처리하였다. GAC 유동조건에서 적용 투과플럭스에 대해 시간에 따른 흡입압의 증가는 관찰되지 않았다. 폐수의 중성 pH에서 파울링 속도는 산성 조건에 비해 GAC 유동조건에서 크게 감소하였다. 해당 폐수의 용액 pH 증가는 입자크기의 증가를 가져왔고 이는 멤브레인 표면에서 상대적으로 성긴 구조의 케이크층 형성을 야기시켰다. 유동상 멤브레인 반응기에서 GAC 유동 하에 95%이상의 COD 제거율이 관찰되었으며 총부유물질은 거의 완벽하게 제거되었다. 실 도금폐수의 pH에서, 유동상 멤브레인 반응기의 구리 및 크롬의 제거는 거의 관찰 되지 않았다. 그러나 pH를 중성으로 증가 시켰을 시 구리와 크롬의 제거율은 각각 99%와 94%까지 증가를 하였다. 적용해 준 pH에 상관 없이, 시안의 경우 95% 이상의 제거율을 달성하였다. 이는 유기물과 시안 착물 형성으로 인해 유동상 멤브레인 반응기 내 GAC의 강한 흡착으로 제거된 것으로 사료된다.