• Title/Summary/Keyword: metal activated carbon

Search Result 168, Processing Time 0.022 seconds

Removal Efficiency of Arsenic by Adsorbents having Different Type of Metal Oxides

  • Min, Sang-Yoon;Kim, Byeong-Kwon;Park, Sun-Ju;Chang, Yoon-Young;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • In this study, oxidation of As (III) as well as removal of total arsenic by adsorbents coated with single oxides or multi-oxides (Fe (III), Mn (IV), Al (III)) was investigated. In addition, multi-functional properties of adsorbents coated with multi-oxides were evaluated. Finally, application of activated carbon impregnated with Fe or Mn-oxides on the treatment of As (III) or As (V) was studied. As (V) adsorption results with adsorbents containing Fe and Al shows that adsorbents containing Fe show a greater removal of As (V) at pH 4 than at pH 7. In contrast adsorbents containing Al shows a favorable removal of As (V) at pH 7 than at pH 4. In case of iron sand, it has a negligible adsorption capacity for As (V) although it contains 217.9 g-Fe/kg-adsorbent, Oxidation result shows that manganese coated sand (MCS) has the greatest As (III) oxidation capacity among all metal oxides at pH 4. Oxidation efficiency of As (III) by IMCS (iron and manganese coated sand) was less than that by MCS. However the total removed amount of arsenic by IMCS was greater than that by MCS.

Development of Micro-Tubular Perovskite Cathode Catalyst with Bi-Functionality on ORR/OER for Metal-Air Battery Applications

  • Jeon, Yukwon;Kwon, Ohchan;Ji, Yunseong;Jeon, Ok Sung;Lee, Chanmin;Shul, Yong-Gun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • As rechargeable metal-air batteries will be ideal energy storage devices in the future, an active cathode electrocatalyst is required with bi-functionality on both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during discharge and charge, respectively. Here, a class of perovskite cathode catalyst with a micro-tubular structure has been developed by controlling bi-functionality from different Ru and Ni dopant ratios. A micro-tubular structure is achieved by the activated carbon fiber (ACF) templating method, which provides uniform size and shape. At the perovskite formula of $LaCrO_3$, the dual dopant system is successfully synthesized with a perfect incorporation into the single perovskite structure. The chemical oxidation states for each Ni and Ru also confirm the partial substitution to B-site of Cr without any changes in the major perovskite structure. From the electrochemical measurements, the micro-tubular feature reveals much more efficient catalytic activity on ORR and OER, comparing to the grain catalyst with same perovskite composition. By changing the Ru and Ni ratio, the $LaCr_{0.8}Ru_{0.1}Ni_{0.1}O_3$ micro-tubular catalyst exhibits great bi-functionality, especially on ORR, with low metal loading, which is comparable to the commercial catalyst of Pt and Ir. This advanced catalytic property on the micro-tubular structure and Ru/Ni synergy effect at the perovskite material may provide a new direction for the next-generation cathode catalyst in metal-air battery system.

Adsorption and Biological Properties of Ni-treated PAN Based Activated Carbon Fiber (Ni가 처리된 PAN계 활성탄소섬유의 흡착특성과 생물학적 특성)

  • Oh, Won-Chun
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.194-199
    • /
    • 2000
  • The study on the adsorption, the surface properties and the antibacterial effects of the Ni-treated PAN based activated carbon fibers was carried out. In the adsorption study on the Ni-treated PAN based ACFs, Type I isotherms for N1-N3 and Type II-Type III isotherms for N4-N6 were obtained, respectively. Futhermore, their adsorbed volumes slowly were decreased with the increase in the mole concentration of Ni on the treated PAN based ACFs. From the BET equation, the specific surface areas of the Ni-treated PAN based ACFs were in the range of $692.58-895.24m^2/g$. The micropore volumes obtained from ${\alpha}_s$-method using common-t value were $0.19-0.56cm^3/g$. The surfaces of PAN based ACFs partially blocked by metal after the treatment were observed from the SEM micrographs. Finally, from the antibacterial effects using Shake flask method against E. coli, the percentage of the effects was 92.5-100% and the antibacterial effect was increased with the increase in mole concentration of Ni treated.

  • PDF

Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry (불꽃원자 흡수 분광법으로 활성탄소에 흡착된 메틸티몰 블루로 납(II)의 예비농축, 분리 및 측정)

  • Ensafi, Ali A.;Ghaderi , Ali R.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO3 solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 g mL-1. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

Adsorption Characteristics of Heavy Metals in Wastewater on Bone Charcoal (Bone Charcoal에 의한 폐수증의 중금속 흡착특성)

  • Chung, Paul-Gene;Kwak, Dong-Heui;Lee, Jae-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.555-563
    • /
    • 2000
  • The study was conducted to evaluate the adsorption equilibrium of heavy metals on bone charcoal made of livestock bone which was sintered at $550{\sim}600^{\circ}C$. Analysis of bone charcoal by XRD and FT-IR showed that crystal structure was similar to that of synthetic hydroxyapatite. Adsorption equilibrium capacity of single component (Pb, Cd, and Zn) on bone charcoal could be expressed as Langmuir, Freundlich, and Sips equations. Sips isotherm was best among the three isotherms. The values predicted by IAST(ideal adsorbed solution theory) showed good relationship to the experimental data in multicomponent adsorption equilibrium. Adsorption affinity was in order of Pb, Cd, and Zn. The order was same in case of activated carbon or synthetic hydroxyapatite. Through the study results. it would be expected that bone charcoal made of livestock could be used in field of wastewater treatment plants as adsorbent to remove heavy metal.

  • PDF

Preparation of Iodine Compound Using Trifluoromethane (트리플루오르메탄을 이용한 요오드화합물의 제조)

  • Choi, Woo-Jin;Ahn, Sung-Hwan;Jang, Young-Jun;Kim, Kyu-Sung;Kim, Myung-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.359-363
    • /
    • 2004
  • Reaction conditions and catalysts were investigated for direct $CF_3I$ synthesis. Optimum reaction temperature was determined by pyrolysis of $CF_3H$ and catalytic reactions. Reactions with changing oxygen concentration were performed. As a result, yield of $CF_3I$ increased with decreasing oxygen concentration. Catalytic activity was changed with the weight ratio of the used metal salts. This result was stemmed from the change in the pore size of activated carbon by the metal salts. The optimum reaction conditions were: $600^{\circ}C$, space velocity of $45hr^{-1}$, and with 7wt% KF/AC catalyst.

DEPENDENCE OF METAL CONCENTRATIONS OF METAL-TREATED ANTIBACTERIAL ACTIVATED CARBON FIBER AND THEIR APPLICATION (금속 처리된 항균성 활성탄소 섬유의 금속 농도의 의존성과 그의 응용)

  • Oh, Won-Chun;Kim, Bum-Soo;Jang, Won-Cheoul;Rheem, In-Soo;Kim, Jong-Wan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.55-60
    • /
    • 2000
  • The adsorption isotherms can be assigned to typical Type I for Ag and Cu-treated ACFs and Type I and Type II for Ni-treated ACFs. From the DSC analysis, A $g_{0.9}$-ACF occurs only exothermic curve at the temperature of $203^{\circ}C$, and relatively stable composition curves were formed. But C $u_{0.3}$-ACF and C $u_{0.4}$-ACF occur endothermic curves at the temperature of 57.26, 107.02 and $215.87^{\circ}C$. N $i_{1.0}$-ACF occurs large endothermic curves at 59.26, 98.40 and $208.89^{\circ}C$ and N $i_{0.8}$-ACF are shown endothermic curves at 59.26 and $157.77^{\circ}C$. From the biological results, the percentages of the antibacterial effects were 96.5-100 for Ag-ACFs, 92.3-99.8 for Cu-ACFs and 95.5-100 for Ni-ACFs, respectivelylyvelylyly

2D Layered Ti3C2Tx Negative Electrode based Activated Carbon Woven Fabric for Structural Lithium Ion Battery (카본우븐패브릭 기반 2D 구조의 Ti3C2Tx 배터리음극소재)

  • Nam, Sanghee;Umrao, Sima;Oh, Saewoong;Oh, Il-Kwon
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.296-300
    • /
    • 2019
  • Two dimensional transition metal carbides and/or nitrides, known as MXenes, are a promising electrode material in energy storage due to their excellent electrical conductivity, outstanding electrochemical performance, and abundant functional groups on the surface. Use of $Ti_3C_2$ as electrode material has significantly enhanced electrochemical performance by providing more chemically active interfaces, short ion-diffusion lengths, and improved charge transport kinetics. Here, we reports the efficient method to synthesize $Ti_3C_2$ from MAX phase, and opens new avenues for developing MXene based electrode materials for Lithium-Ion batteries.

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.250-257
    • /
    • 2022
  • Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.