• 제목/요약/키워드: metaheuristic methods

검색결과 43건 처리시간 0.018초

Pile bearing capacity prediction in cold regions using a combination of ANN with metaheuristic algorithms

  • Zhou Jingting;Hossein Moayedi;Marieh Fatahizadeh;Narges Varamini
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.417-440
    • /
    • 2024
  • Artificial neural networks (ANN) have been the focus of several studies when it comes to evaluating the pile's bearing capacity. Nonetheless, the principal drawbacks of employing this method are the sluggish rate of convergence and the constraints of ANN in locating global minima. The current work aimed to build four ANN-based prediction models enhanced with methods from the black hole algorithm (BHA), league championship algorithm (LCA), shuffled complex evolution (SCE), and symbiotic organisms search (SOS) to estimate the carrying capacity of piles in cold climates. To provide the crucial dataset required to build the model, fifty-eight concrete pile experiments were conducted. The pile geometrical properties, internal friction angle 𝛗 shaft, internal friction angle 𝛗 tip, pile length, pile area, and vertical effective stress were established as the network inputs, and the BHA, LCA, SCE, and SOS-based ANN models were set up to provide the pile bearing capacity as the output. Following a sensitivity analysis to determine the optimal BHA, LCA, SCE, and SOS parameters and a train and test procedure to determine the optimal network architecture or the number of hidden nodes, the best prediction approach was selected. The outcomes show a good agreement between the measured bearing capabilities and the pile bearing capacities forecasted by SCE-MLP. The testing dataset's respective mean square error and coefficient of determination, which are 0.91846 and 391.1539, indicate that using the SCE-MLP approach as a practical, efficient, and highly reliable technique to forecast the pile's bearing capacity is advantageous.

COMPARISON OF METAHEURISTIC ALGORITHMS FOR EXAMINATION TIMETABLING PROBLEM

  • Azimi, Zhara-Naji
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.337-354
    • /
    • 2004
  • SA, TS, GA and ACS are four of the main algorithms for solving challenging problems of intelligent systems. In this paper we consider Examination Timetabling Problem that is a common problem for all universities and institutions of higher education. There are many methods to solve this problem, In this paper we use Simulated Annealing, Tabu Search, Genetic Algorithm and Ant Colony System in their basic frameworks for solving this problem and compare results of them with each other.

적합성 함수를 이용한 2차원 저장소 적재 문제의 휴리스틱 알고리즘 (A Heuristic Algorithm for the Two-Dimensional Bin Packing Problem Using a Fitness Function)

  • 연용호;이선영;이종연
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.403-410
    • /
    • 2009
  • 2차원 저장소 적재는 NP-hard 문제로서 그 문제의 정확한 해를 구하는 것이 어려운 것으로 알려져 있으며, 이의 더 좋은 해를 얻기 위해 유전자(genetic) 알고리즘, 시뮬레이티드 어닐링(simulated annealing), 타부서치(tabu search)등과 같은 근사적 접근법이 제안되어 왔다. 하지만 분지한계(branch-and-bound)나 타부서치 기법들을 이용한 기존의 대표적인 근사 알고리즘들은 휴리스틱 알고리즘의 해에 기반을 둠으로 효율성이 낮고 반복수행에 의한 계산시간이 길다. 따라서 본 논문에서는 이러한 근사 알고리즘의 복잡성을 간소화하고, 알고리즘의 효율성을 높이기 위해 적재가능성을 판단하는 적합성 함수(fitness function)를 정의하고 이를 이용하여 어떤 특정 개체의 적재영역을 판단하는데 영향을 주는 적재영역의 수를 계산한다. 또한, 이들을 이용한 새로운 휴리스틱 알고리즘을 제안하였다. 끝으로 기존의 휴리스틱 또는 메타휴리스틱 기법과의 비교실험을 통해 기존의 휴리스틱 알고리즘인 FFF와 FBS에 비해 97%의 결과가 같거나 우수하였으며, 타부서치 알고리즘에 비해 86%의 결과가 같거나 우수한 것으로 나타났다.

양측 조립라인 균형문제의 병렬군집 알고리즘 (Parallel Clustering Algorithm for Balancing Problem of a Two-sided Assembly Line)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.95-101
    • /
    • 2022
  • NP-난제로 알려진 양측 조립라인 균형문제는 주로 메타휴리스틱 방법들을 적용하여 해를 구하고 있다. 본 논문은 총 작업완료시간 W와 순환시간 c가 주어진 양측 조립라인의 선행순서도에서 좌측, 우측과 좌·우측 무관으로 공정들을 분류하고, 좌측과 우측 각각에 대해 M* = ${\lceil}$W/c${\rceil}$개의 작업대에 Ti = c* ± α < c, c* = ${\lceil}$W/m*${\rceil}$이 되도록 공정들을 할당하는 병렬군집 알고리즘을 제안하였다. 제안된 알고리즘을 4개의 실험데이터, 17개의 c에 적용한 결과, 기존의 메타휴리스틱 방법들에 비해 최소 작업대 수 m*를 구하였으며, Tmax < c로 순환시간을 단축하였다. 또한, 제안된 알고리즘은 휴리스틱 방법임에도 불구하고, 조립라인 효율성의 극대화와 작업자간 작업시간 편차를 최소화시킬 수 있었다.

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • 제85권3호
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

NoC-Based SoC Test Scheduling Using Ant Colony Optimization

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.129-140
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization (ACO)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip (SoCs), on the assumption that the test platform, including specific methods and configurations such as test packet routing, generation, and absorption, is installed. The ACO metaheuristic model, inspired by the ant's foraging behavior, can autonomously find better results by exploring more solution space. The proposed method efficiently combines the rectangle packing method with ACO and improves the scheduling results by dynamically choosing the test-access-mechanism widths for cores and changing the testing orders. The power dissipation and variable test clock mode are also considered. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce overall test time. Moreover, the computation time of the algorithm is less than a few seconds in most cases.

  • PDF

Economic Dispatch Using Hybrid Particle Swarm Optimization with Prohibited Operating Zones and Ramp Rate Limit Constraints

  • Prabakaran, S.;Senthilkuma, V.;Baskar, G.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1441-1452
    • /
    • 2015
  • This paper proposes a new Hybrid Particle Swarm Optimization (HPSO) method that integrates the Evolutionary Programming (EP) and Particle Swarm Optimization (PSO) techniques. The proposed method is applied to solve Economic Dispatch(ED) problems considering prohibited operating zones, ramp rate limits, capacity limits and power balance constraints. In the proposed HPSO method, the best features of both EP and PSO are exploited, and it is capable of finding the most optimal solution for the non-linear optimization problems. For validating the proposed method, it has been tested on the standard three, six, fifteen and twenty unit test systems. The numerical results show that the proposed HPSO method is well suitable for solving non-linear economic dispatch problems, and it outperforms the EP, PSO and other modern metaheuristic optimization methods reported in the recent literatures.

Machine Layout Decision Algorithm for Cellular Formation Problem

  • Lee, Sang-Un
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.47-54
    • /
    • 2016
  • Cellular formation and layout problem has been known as a NP-hard problem. Because of the algorithm that can be solved exact solution within polynomial time has been unknown yet. This paper suggests a systematic method to be obtain of 2-degree partial directed path from the frequency of consecutive forward order. We apply the modified Kruskal algorithm of minimum spanning tree to be obtain the partial directed path. the proposed reverse constructive algorithm can be solved for this problem with O(mn) time complexity. This algorithm performs same as best known result of heuristic and metaheuristic methods for 4 experimental data.