• 제목/요약/키워드: metabolite profiling

검색결과 86건 처리시간 0.023초

Metabolomic analysis of healthy human urine following administration of glimepiride using a liquid chromatography-tandem mass spectrometry

  • Do, Eun Young;Gwon, Mi-Ri;Kim, Bo Kyung;Ohk, Boram;Lee, Hae Won;Kang, Woo Youl;Seong, Sook Jin;Kim, Hyun-Ju;Yoon, Young-Ran
    • Translational and Clinical Pharmacology
    • /
    • 제25권2호
    • /
    • pp.67-73
    • /
    • 2017
  • Glimepiride, a third generation sulfonylurea, is an antihyperglycemic agent widely used to treat type 2 diabetes mellitus. In this study, an untargeted urinary metabolomic analysis was performed to identify endogenous metabolites affected by glimepiride administration. Urine samples of twelve healthy male volunteers were collected before and after administration of 2 mg glimepiride. These samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and then subjected to multivariate data analysis including principal component analysis and orthogonal partial least squares discriminant analysis. Through this metabolomic profiling, we identified several endogenous metabolites such as adenosine 3', 5'-cyclic monophosphate (cAMP), quercetin, tyramine, and urocanic acid, which exhibit significant metabolomic changes between pre- and posturine samples. Among these, cAMP, which is known to be related to insulin secretion, was the most significantly altered metabolite following glimepiride administration. In addition, the pathway analysis showed that purine, tyrosine, and histidine metabolism was affected by pharmacological responses to glimepiride. Together, the results suggest that the pharmacometabolomic approach, based on LC-MS/MS, is useful in understanding the alterations in biochemical pathways associated with glimepiride action.

오미자(Schisandra chinensis)의 국내 산지별 화학적마커 선정을 위한 LC/MS 기반의 대사체학 접근법 (LC/MS-based metabolomics approach for selection of chemical markers by domestic production region of Schisandra chinensis)

  • 김인선;오선민;송하은;김두영;윤다혜;이대영;류형원
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.467-476
    • /
    • 2023
  • 오미자(Schisandra chinensis)는 오미자과에 속하는 낙엽활엽덩굴식물로 한국, 일본, 중국, 대만 등 동아시아에 널리 분포한다. 오미자에 함유된 주요 성분에는 리그난 화합물뿐만 아니라 트리테르페노이드 화합물도 포함되어 있는 것으로 보고되었다. 한국 산지별 오미자의 특성을 구별하기 위해 대사산물 프로파일링과 다변량 통계 분석 기법인 PCA을 수행하여 판별식을 설정하였고, 그 결과 triterpenoids 16종, lignan 9종, flavonoid, phenylpropanoid, fatty acid 각 1종을 동정하였다. 또한 다변량 통계분석을 통해 OPLS-DA의 s-plot 모델을 적용하여 단양, 문경, 거창, 평창의 4개 그룹을 구분하는 것을 확인하였고, lanostane, cycloartane, 그리고 schiartane triterpenoid, dibenzocyclooctadiene lignan 이 각각 화학적마커로 동정하였다.

Comparative GC-MS Based In vitro Assays of 5α-Reductase Activity Using Rat Liver S9 Fraction

  • Lee, Su-Hyeon;Lee, Dong-Hyoung;Lee, Jeong-Ae;Lee, Won-Yong;Chung, Bong-Chul;Choi, Man-Ho
    • Mass Spectrometry Letters
    • /
    • 제3권1호
    • /
    • pp.21-24
    • /
    • 2012
  • $5{\alpha}$-Dihydrotestosterone (DHT) is the primary active metabolite of testosterone, catalyzed by $5{\alpha}$-reductase ($5{\alpha}R$) in the skin, prostate, and liver. In this study, the $5{\alpha}R$ activity in rat liver S9 fraction in the presence of a NADPH-generating system was evaluated and compared by gas chromatography-mass spectrometry (GC-MS)-based in vitro assays. Testosterone and a $5{\alpha}R$ inhibitor, finasteride, were added to the S9 fractions and incubated at $37^{\circ}C$ for 1 h. Both testosterone and DHT were quantitatively measured and compared with two different GC-MS-based steroid profiling techniques. DHT was not detected by conventional GC-MS analysis in the absence of finasteride when the concentration of testosterone in the S9 fraction was less than $0.2{\mu}M$, whereas the isotope-dilution GC-MS (GC-IDMS) system was able to evaluate the $5{\alpha}R$ activity. Because the S9 fraction contains more reactive enzymes and is easier to collect from tissues compared with a microsomal solution, the combination of the S9 fraction and GC-IDMS technique may be a promising assay for evaluating the $5{\alpha}R$ activity in large-scale clinical studies.

Secondary Metabolite Profiling in Various Parts of Tomato Plants

  • Kim, Dong Sub;Na, Haeyoung;Kwack, Yurina;Chun, Changhoo
    • 원예과학기술지
    • /
    • 제32권2호
    • /
    • pp.252-260
    • /
    • 2014
  • Contents of carotenoids, phenolic compounds, volatile organic compounds, and alkaloids in leaves, internodes, fruits, and roots of tomatoes in different developmental stages were measured. Lycopene, ${\beta}$-carotene, and lutein were detected in all the tested parts except roots and green fruits. Lycopene content in red fruits was $49.04{\mu}g{\cdot}g^{-1}$ FW, while that in the other parts was below $40{\mu}g{\cdot}g^{-1}$ FW. ${\beta}$-Carotene and lutein contents in 24th leaves were 5.81 and $6.40{\mu}g{\cdot}g^{-1}$ FW, respectively, and were greater than those in the other parts. Caffeic, chlorogenic, and vanillic acids were detected in all the tested parts except roots. The content of chlorogenic acid in the 18th leaves was $40.11{\mu}g{\cdot}g^{-1}$ FW, while that in the other parts was lower than $31.00{\mu}g{\cdot}g^{-1}$ FW. The contents of caffeic and vanillic acids in the 24th leaves were 9.18 and $1.64{\mu}g{\cdot}g^{-1}$ FW, respectively, and were greater than those in the other parts. Moreover, younger leaves contained the more diverse volatile organic compounds including monoterpenes and sesquiterpenes. Contents of dehydro-tomatine and ${\alpha}$-tomatine were greatest in leaves, followed by internodes, roots and fruits. Younger leaves and internodes contained more dehydro-tomatine and ${\alpha}$-tomatine than older leaves and internodes. The contents of dehydro-tomatine and ${\alpha}$-tomatine in the 24th leaves were 0.89 and $1.42mg{\cdot}g^{-1}$ FW, respectively, and were greatest among all the tested parts. Our results indicated that, except lycopene, tomato leaves included greater secondary metabolites contents than red fruits. The results suggest that inedible parts of tomato plants can be used as raw material for antioxidants, anti-inflammatory agents, fungistats, and pesticides.

Metabolite profiling of fermented ginseng extracts by gas chromatography mass spectrometry

  • Park, Seong-Eun;Seo, Seung-Ho;Lee, Kyoung In;Na, Chang-Su;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • 제42권1호
    • /
    • pp.57-67
    • /
    • 2018
  • Background: Ginseng contains many small metabolites such as amino acids, fatty acids, carbohydrates, and ginsenosides. However, little is known about the relationships between microorganisms and metabolites during the entire ginseng fermentation process. We investigated metabolic changes during ginseng fermentation according to the inoculation of food-compatible microorganisms. Methods: Gas chromatography mass spectrometry (GC-MS) datasets coupled with the multivariate statistical method for the purpose of latent-information extraction and sample classification were used for the evaluation of ginseng fermentation. Four different starter cultures (Saccharomyces bayanus, Bacillus subtilis, Lactobacillus plantarum, and Leuconostoc mesenteroide) were used for the ginseng extract fermentation. Results: The principal component analysis score plot and heat map showed a clear separation between ginseng extracts fermented with S. bayanus and other strains. The highest levels of fructose, maltose, and galactose in the ginseng extracts were found in ginseng extracts fermented with B. subtilis. The levels of succinic acid and malic acid in the ginseng extract fermented with S. bayanus as well as the levels of lactic acid, malonic acid, and hydroxypruvic acid in the ginseng extract fermented with lactic acid bacteria (L. plantarum and L. mesenteroide) were the highest. In the results of taste features analysis using an electronic tongue, the ginseng extracts fermented with lactic acid bacteria were significantly distinguished from other groups by a high index of sour taste probably due to high lactic acid contents. Conclusion: These results suggest that a metabolomics approach based on GC-MS can be a useful tool to understand ginseng fermentation and evaluate the fermentative characteristics of starter cultures.

Essential Oil Yields and Chemical Compositions of Chamaecyparis obtuse Obtained from Various Populations and Environmental Factors

  • Kang, Young Min;Min, Ji Yun;Choi, Myung Suk
    • Journal of Forest and Environmental Science
    • /
    • 제30권3호
    • /
    • pp.285-292
    • /
    • 2014
  • Essential oil yields and chemical compositions from 5 populations of Chamaecyparis obtusa with several environmental factors were investigated through essential oil extracted distillation apparatus and metabolite profiling by GC-MS analysis. Among the populations, content of essential oil at Gokseong was significantly higher than other populations. To compare the several environmental factors affecting on chemical composition and essential oil yields from C. obtuse at Gokseong, the environmental factors (soil condition, temperature, humidity, and moisture content) were measured during 1 year. The essential oils at Goksung based on humidity on March, July, and November was significantly different from other months. The essential oils at Goksung based on temperature on July and August was significantly different from other months. The essential oils at Goksung based on the moisture content on September were significantly different from other months. The percentage of T-N, OM, and yield of oil at Gokseong were significantly different on from other populations. The main constituents of C. obtusa at all populations were ${\alpha}$-pinene, ${\beta}$-pinene, ${\alpha}$-terpinene, ${\gamma}$-terpinene, terpinene-4-ol, isobonyl acetate, terpinyl acetate, and cedar acetate. Specially, Essential oil compositions (%) of ${\alpha}$-terpinene and cedar acetate were higher at Gokseong than at other populations. The chemical compositions of essential oils were variable depend on populations and environmental conditions. Therefore, this study might be used as fundamental research on study for selection of high productive terpenoids and for understanding about biosynthesis of essential oils in C. obtusa.

Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice

  • Jeon, Jang Su;Oh, Jeong-Ja;Kwak, Hui Chan;Yun, Hwi-yeol;Kim, Hyoung Chin;Kim, Young-Mi;Oh, Soo Jin;Kim, Sang Kyum
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.167-174
    • /
    • 2018
  • Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine ${\beta}-synthase$ and down-regulation of ${\gamma}-glutamylcysteine$ ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.

Changes in the metabolic profile and nutritional composition of rice in response to NaCl stress

  • Nam, Kyong-Hee;Kim, Do Young;Shin, Hee Jae;Pack, In-Soon;Kim, Chang-Gi
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.154-168
    • /
    • 2018
  • Salinity is a major abiotic stress that adversely affects crop productivity and quality. In this study, the metabolic profile and nutritional composition of rice in response to NaCl were analyzed. The plants were exposed to stressed or unstressed conditions, and their metabolic changes were examined in the shoots, roots, and grains collected at different growth stages. The levels of nutrients and anti-nutrients, including proximates, amino acids, fatty acids, minerals, vitamins, and phytic acid, were also determined for the grains. Application of NaCl significantly decreased the shoot and root growth and induced metabolic alterations at the tillering stage. During the heading stage, only the root metabolites were influenced by NaCl, and no metabolic variations related to salinity were found in the shoot, roots, and grains at the ripening stage. Nutritional analysis of the grain samples revealed that the amounts of linolenic acid and tricosanoic acid were significantly reduced while those of copper, sodium, and phytic acid were enhanced in response to stress. However, except for sodium, those differences were not great. Our results suggest that although NaCl-salinity influences the phenotypic and metabolic profiles of rice shoots and roots at the tillering stage, this impact becomes negligible as tissue development proceeds. This is especially true for the grains. Compositional analysis of the grains indicated that salinity induces some changes in fatty acids, minerals, and anti-nutrients.

Improved Resistance to Oxidative Stress by a Loss-of-Function Mutation in the Arabidopsis UGT71C1 Gene

  • Lim, Chae Eun;Choi, Jung Nam;Kim, In A;Lee, Shin Ae;Hwang, Yong-Sic;Lee, Choong Hwan;Lim, Jun
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.368-375
    • /
    • 2008
  • Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.

Artemisia princeps var. orientalis 수용성 추출물의 항균효과 (Antimicrobial Activity of Water-soluble Extract from Artemisia princeps var. orientalis)

  • 조화영;윤성용;박정진;윤경원;박종문
    • KSBB Journal
    • /
    • 제21권2호
    • /
    • pp.129-132
    • /
    • 2006
  • Artemisia princes var. orientalis의 수용성 추출물이 식품, 화장품, 의약품 등의 항균제로 이용될 수 있는지에 대해 연구 하였다. 순수한 물을 이용한 추출물에서는 항균성을 찾기 힘들었고, 쑥의 줄기와 잎 부분에서 메탄올로 추출한 후 물로 추출한 물이 Staphylococcus aureus에 대해서 항균성을 크게 나타냈으며, 잎이 줄기 부분보다 더 큰 항균성을 나타냄을 확인했다. 항균성을 갖는 물질을 밝혀내기 위해 쑥의 주된 항균 성분이라 알려진 caffeic acid와 비교 실험을 하였다. UV 특성곡선에서 caffeic acid와 유사한 phenolic compound의 profiling은 확인할 수 있었으나 caffeic acid의 disc diffusion method를 이용한 실험에서는 항균능력을 나타내지 않았다. 물질규명을 위해 추출물을 세 부분으로 분획 하였고, 이 중에서 Staphylococcus aureus에 대해 항균성은 UK 2에서 크게 나타났다. 본 연구는 Artemisia princeps var. orientalis 의 메탄올 후 물 추출물이 항균제로써의 가능성을 알아봄으로써 식품 또는 화장품의 보존료나 항균제의 이용성이 있음을 충분히 확인하였다.