Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.054

Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57BL/6 Mice  

Jeon, Jang Su (College of Pharmacy, Chungnam National University)
Oh, Jeong-Ja (College of Pharmacy, Chungnam National University)
Kwak, Hui Chan (College of Pharmacy, Chungnam National University)
Yun, Hwi-yeol (College of Pharmacy, Chungnam National University)
Kim, Hyoung Chin (Bio-Evaluation Center, KRIBB)
Kim, Young-Mi (College of Pharmacy, Hanyang University)
Oh, Soo Jin (Bio-Evaluation Center, KRIBB)
Kim, Sang Kyum (College of Pharmacy, Chungnam National University)
Publication Information
Biomolecules & Therapeutics / v.26, no.2, 2018 , pp. 167-174 More about this Journal
Abstract
Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine ${\beta}-synthase$ and down-regulation of ${\gamma}-glutamylcysteine$ ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.
Keywords
Aging; Mice; Sulfur amino acids; Metabolomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dayal, S. and Lentz, S. R. (2008) Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler. Thromb. Vasc. Biol. 28, 1596-1605.   DOI
2 Finkelstein, J. D. and Martin, J. J. (1986) Methionine metabolism in mammals. Adaptation to methionine excess. J. Biol. Chem. 261, 1582-1587.
3 Finkelstein, J. D. and Martin, J. J. (2000) Homocysteine. Int. J. Biochem. Cell Biol. 32, 385-389.   DOI
4 Gimenez, R. and Aguilar, J. (2003) Effects of cytidine 5'-diphosphocholine on plasma homocysteine levels in rat. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 134, 271-276.   DOI
5 Grillo, M. A. (1985) Metabolism and function of polyamines. Int. J. Biochem. 17, 943-948.   DOI
6 Harper, A. E., Benevenga, N. J. and Wohlhueter, R. M. (1970) Effects of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 50, 428-558.   DOI
7 Brosnan, J. T. and Brosnan, M. E. (2006) The sulfur-containing amino acids: an overview. J. Nutr. 136, 1636S-1640S.   DOI
8 Heafield, M. T., Fearn, S., Steventon, G. B., Waring, R. H., Williams, A. C. and Sturman, S. G. (1990) Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson's and Alzheimer's disease. Neurosci. Lett. 110, 216-220.   DOI
9 Andersen, M. L., Martins, P. J., D'Almeida, V., Santos, R. F., Bignotto, M. and Tufik, S. (2004) Effects of paradoxical sleep deprivation on blood parameters associated with cardiovascular risk in aged rats. Exp. Gerontol. 39, 817-824.   DOI
10 Anisimov, V. N., Piskunova, T. S., Popovich, I. G., Zabezhinski, M. A., Tyndyk, M. L., Egormin, P. A., Yurova, M. V., Rosenfeld, S. V., Semenchenko, A. V., Kovalenko, I. G., Poroshina, T. E. and Berstein, L. M. (2010) Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice. Aging (Albany NY) 2, 945-958.
11 Baker, D. H. (2006) Comparative species utilization and toxicity of sulfur amino acids. J. Nutr. 136, 1670S-1675S.   DOI
12 Barja de, Q. G., Perez-Campo, R. and Lopez, T. M. (1990) Anti-oxidant defences and peroxidation in liver and brain of aged rats. Biochem. J. 272, 247-250.   DOI
13 Benevenga, N. J. and Steele, R. D. (1984) Adverse effects of excessive consumption of amino acids. Annu. Rev. Nutr. 4, 157-181.   DOI
14 Brattstrom, L., Lindgren, A., Israelsson, B., Andersson, A. and Hultberg, B. (1994) Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J. Intern. Med. 236, 633-641.   DOI
15 Kim, S. K., Seo, J. M., Jung, Y. S., Kwak, H. E. and Kim, Y. C. (2003) Alterations in hepatic metabolism of sulfur-containing amino acids induced by ethanol in rats. Amino Acids 24, 103-110.
16 Iciek, M., Chwatko, G., Lorenc-Koci, E., Bald, E. and Wlodek, L. (2004) Plasma levels of total, free and protein bound thiols as well as sulfane sulfur in different age groups of rats. Acta Biochim. Pol. 51, 815-824.
17 Iyamu, E. W., Perdew, H. and Woods, G. M. (2008) Cysteine-iron promotes arginase activity by driving the Fenton reaction. Biochem. Biophys. Res. Commun. 376, 116-120.   DOI
18 Jacobs, R. L., House, J. D., Brosnan, M. E. and Brosnan, J. T. (1998) Effects of streptozotocin-induced diabetes and of insulin treatment on homocysteine metabolism in the rat. Diabetes 47, 1967-1970.   DOI
19 Kaplowitz, N., Aw, T. Y. and Ookhtens, M. (1985) The regulation of hepatic glutathione. Ann. Rev. Pharmacol. Toxicol. 25, 715-744.
20 Kim, S. K. and Kim, Y. C. (2005) Effects of betaine supplementation on hepatic metabolism of sulfur-containing amino acids in mice. J. Hepatol. 42, 907-913.   DOI
21 Krumdieck, C. L. and Prince, C. W. (2000) Mechanisms of homocysteine toxicity on connective tissues: implications for the morbidity of aging. J. Nutr. 130, 365S-368S.   DOI
22 Kwak, H. K., Kim, Y. M., Oh, S. J. and Kim, S. K. (2015) Sulfur amino acid metabolism in Zucker diabetic fatty rats. Biochem. Pharmacol. 96, 256-266.   DOI
23 Liu, R. and Choi, J. (2000) Age-associated decline in ${\gamma}$-glutamylcysteine synthetase gene expression in rats. Free Radic. Biol. Med. 28, 566-574.   DOI
24 Lu, S. C., Garcia-Ruiz, C., Kuhlenkamp, J., Ookhtens, M., Salas-Prato, M. and Kaplowitz, N. (1990) Hormonal regulation of glutathione efflux. J. Biol. Chem. 265, 16088-16095.
25 Mills, B. J., Weiss, M. M., Lang, C. A., Liu, M. C. and Ziegler, C. (2000) Blood glutathione and cysteine changes in cardiovascular disease. J. Lab. Clin. Med. 135, 396-401.
26 Cabrero, C., Puerta, J. and Alemany, S. (1987) Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver. Eur. J. Biochem. 170, 299-304.   DOI
27 Chen, T. S., Richie, J. P., Nagasawa, H. T. and Lang, C. A. (2000) Glutathione monoethyl ester protects against glutathione deficiencies due to aging and acetaminophen in mice. Mech. Ageing Dev. 120, 127-139.
28 Lu, S. C. (2013) Glutathione synthesis. Biochim. Biophys. Acta 1830, 3143-3153.   DOI
29 Martins, P. J., Galdieri, L. C., Souza, F. G., Andersen, M. L., Benedito-Silva, A. A., Tufik, S. and D'Almeida, V. (2005) Physiological variation in plasma total homocysteine concentrations in rats. Life Sci. 76, 2621-2629.   DOI
30 Mato, J. M. and Lu, S. C. (2007) Role of S-adenosyl-L-methionine in liver health and injury. Hepatology 45, 1306-1312.   DOI
31 Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R. and Smith-Wheelock, M. (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119-125.   DOI
32 Reid, M. and Jahoor, F. (2001) Glutathione in disease. Curr. Opin. Clin. Nutr. Metab. Care 4, 65-71.   DOI
33 Nakata, K., Kawase, M., Ogino, S., Kinoshita, C., Murata, H., Sakaue, T., Ogata, K. and Ohmori, S. (1996) Effects of age on levels of cysteine, glutathione and related enzyme activities in livers of mice and rats and an attempt to replenish hepatic glutathione level of mouse with cysteine derivatives. Mech. Ageing Dev. 90, 195-207.   DOI
34 Orentreich, N., Matias, J. R., DeFelice, A. and Zimmerman, J. A. (1993) Low methionine ingestion by rats extends life span. J. Nutr. 123, 269-274.
35 Ou, X., Yang, H., Ramani, K., Ara, A. I., Chen, H., Mato, J. M. and Lu, S. C. (2007) Inhibition of human betaine-homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. Biochem. J. 401, 87-96.   DOI
36 Paredes, J., Jones, D. P., Wilson, M. E. and Herndon, J. G. (2014) Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). Age (Dordr) 36, 719-732.   DOI
37 Ratnam, S., Maclean, K. N., Jacobs, R. L., Brosnan, M. E., Kraus, J. P. and Brosnan, J. T. (2002) Hormonal regulation of cystathionine ${\beta}$-synthase expression in liver. J. Biol. Chem. 277, 42912-42918.   DOI
38 Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N. and Zimmerman, J. A. (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB J. 8, 1302-1307.   DOI
39 Rikans, L. E. and Kosanke, S. D. (1984) Effect of aging on liver glutathione levels and hepatocellular injury from carbon tetrachloride, allyl alcohol or galactosamine. Drug Chem. Toxicol. 7, 595-604.   DOI
40 Selhub, J., Jacques, P. F., Wilson, P. W., Rush, D. and Rosenberg, I. H. (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270, 2693-2698.
41 Stipanuk, M. H. (1986) Metabolism of sulfur-containing amino acids. Annu. Rev. Nutr. 6, 179-209.   DOI
42 Stipanuk, M. H. (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu. Rev. Nutr. 24, 539-577.   DOI
43 Stipanuk, M. H., Dominy, J. E., Jr., Lee, J. I. and Coloso, R. M. (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J. Nutr. 136, 1652S-1659S.   DOI
44 Yang, M. J., Sim, S., Jeon, J. H., Jeong, E., Kim, H. C., Park, Y. H. and Kim, I. B. (2013) Mitral and tufted cells are potential cellular targets of nitration in the olfactory bulb of aged mice. PLoS ONE 8, e59673.   DOI
45 Stromme, J. H., Rustad, P., Steensland, H., Theodorsen, L. and Urdal, P. (2004) Reference intervals for eight enzymes in blood of adult females and males measured in accordance with the International Federation of Clinical Chemistry reference system at 37 degrees C: part of the Nordic Reference Interval Project. Scand. J. Clin. Lab. Invest. 64, 371-384.   DOI
46 Suh, J. H., Shenvi, S. V., Dixon, B. M., Liu, H., Jaiswal, A. K., Liu, R. M. and Hagen, T. M. (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U.S.A. 101, 3381-3386.   DOI
47 Troen, A. M., Lutgens, E., Smith, D. E., Rosenberg, I. H. and Selhub, J. (2003) The atherogenic effect of excess methionine intake. Proc. Natl. Acad. Sci. U.S.A. 100, 15089-15094.   DOI
48 Uthus, E. O. and Brown-Borg, H. M. (2003) Altered methionine metabolism in long living Ames dwarf mice. Exp. Gerontol. 38, 491-498.
49 Uthus, E. O. and Brown-Borg, H. M. (2006) Methionine flux to transsulfuration is enhanced in the long living Ames dwarf mouse. Mech. Ageing Dev. 127, 444-450.
50 Yang, C. S., Chou, S. T., Liu, L., Tsai, P. J. and Kuo, J. S. (1995) Effect of ageing on human plasma glutathione concentrations as determined by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B, Biomed. Appl. 674, 23-30.   DOI