• 제목/요약/키워드: metabolite analysis

검색결과 447건 처리시간 0.025초

RNA-Seq De Novo Assembly and Differential Transcriptome Analysis of Korean Medicinal Herb Cirsium japonicum var. spinossimum

  • Roy, Neha Samir;Kim, Jung-A;Choi, Ah-Young;Ban, Yong-Wook;Park, Nam-Il;Park, Kyong-Cheul;Yang, Hee-sun;Choi, Ik-Young;Kim, Soonok
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.34.1-34.9
    • /
    • 2018
  • Cirsium japonicum belongs to the Asteraceae or Compositae family and is a medicinal plant in Asia that has a variety of effects, including tumour inhibition, improved immunity with flavones, and antidiabetic and hepatoprotective effects. Silymarin is synthesized by 4-coumaroyl-CoA via both the flavonoid and phenylpropanoid pathways to produce the immediate precursors taxifolin and coniferyl alcohol. Then, the oxidative radicalization of taxifolin and coniferyl alcohol produces silymarin. We identified the expression of genes related to the synthesis of silymarin in C. japonicum in three different tissues, namely, flowers, leaves, and roots, through RNA sequencing. We obtained 51,133 unigenes from transcriptome sequencing by de novo assembly using Trinity v2.1.1, TransDecoder v2.0.1, and CD-HIT v4.6 software. The differentially expressed gene analysis revealed that the expression of genes related to the flavonoid pathway was higher in the flowers, whereas the phenylpropanoid pathway was more highly expressed in the roots. In this study, we established a global transcriptome dataset for C. japonicum. The data shall not only be useful to focus more deeply on the genes related to product medicinal metabolite including flavolignan but also to study the functional genomics for genetic engineering of C. japonicum.

AKT1-targeted proapoptotic activity of compound K in human breast cancer cells

  • Choi, Eunju;Kim, Eunji;Kim, Ji Hye;Yoon, Keejung;Kim, Sunggyu;Lee, Jongsung;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.692-698
    • /
    • 2019
  • Background: Breast cancer is a severe disease and the second leading cause of cancer death in women worldwide. To surmount this, various diagnosis and treatment options for breast cancer have been developed. One of the most effective strategies for cancer treatment is to induce apoptosis using naturally occurring compounds. Compound K (CK) is a ginseng saponin metabolite generated by human intestinal bacteria. CK has been studied for its cardioprotective, antiinflammatory, and liver-protective effects; however, the role of CK in breast cancer is not fully understood. Methods: To investigate the anticancer effects of CK in SKBR3 and MDA-MB-231 cells, cell viability assays and flow cytometry analysis were used. In addition, the direct targets of CK anticancer activity were identified using immunoblotting analysis and overexpression experiments. Invasion, migration, and clonogenic assays were carried out to determine the effects of CK on cancer metastasis. Results: CK-induced cell apoptosis in SKBR3 cells as determined through 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assays, propidium iodide (PI) and annexin V staining, and morphological changes. CK increased the cleaved forms of caspase-7, caspase-8, and caspase-9, whereas the expression of Bcl-2 was reduced by CK. In assays probing the cell survival pathway, CK activated only AKT1 and not AKT2. Moreover, CK inhibited breast cancer cell invasion, migration, and colony formation. Through regulation of AKT1 activity, CK exerts anticancer effects by inducing apoptosis. Conclusion: Our results suggest that CK could be used as a therapeutic compound for breast cancer.

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • 제64권2호
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

A Plant Metabolomic Approach to Identify the Difference of the Seeds and Flowers Extracts of Carthamus tinctorius L.

  • Ozan Kaplan;Nagehan Saltan;Arzu Kose;Yavuz Bulent Kose;Mustafa Celebier
    • Mass Spectrometry Letters
    • /
    • 제14권2호
    • /
    • pp.42-47
    • /
    • 2023
  • Carthamus tinctorius L. (known as safflower) is a valuable oil plant whose importance is increasing rapidly in the world due to its high adaptation to arid regions. The seeds of this unique plant are especially used in edible oil, soap, paint, varnish and lacquer production. Its flowers are used in vegetable dye production and medicinal purposes beside its features as a coloring and flavoring in food. After the oil is removed, the remaining pulp and plant parts are used as animal feed, and dry straw residues are used as fuel. Beside all these features, its usage as a herbal medicinal plants for various diseases has gained importance on recent years. In this study, it was designed a plant metabolomic approach which transfers all the recent data processing strategies of untargeted metabolomics in clinical applications to the present study. Q-TOF LC/MS-based analysis of the extracts (70% ethanol, hexane, and chloroform) for both seed and flowers was performed using a C18 column (Agilent Zorbax 1.8 µM, 100 × 2.1 mm). Differences were observed in seed and fruit extracts and these differences were visualized using principal component analysis (PCA) plots. The total number and intersections of the peaks in the extracts were visualized using peak count comparison graph. Based on the experimental results, the number of the detected peaks for seeds was higher than the ones for the flowers for all solvent systems to extract the samples.

Reciprocal regulation of SIRT1 and AMPK by Ginsenoside compound K impedes the conversion from plasma cells to mitigate for podocyte injury in MRL/lpr mice in a B cell-specific manner

  • Ziyu Song;Meng Jin;Shenglong Wang;Yanzuo Wu;Qi Huang;Wangda Xu;Yongsheng Fan;Fengyuan Tian
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.190-201
    • /
    • 2024
  • Background: Deposition of immune complexes drives podocyte injury acting in the initial phase of lupus nephritis (LN), a process mediated by B cell involvement. Accordingly, targeting B cell subsets represents a potential therapeutic approach for LN. Ginsenoside compound K (CK), a bioavailable component of ginseng, possesses nephritis benefits in lupus-prone mice; however, the underlying mechanisms involving B cell subpopulations remain elusive. Methods: Female MRL/lpr mice were administered CK (40 mg/kg) intragastrically for 10 weeks, followed by measurements of anti-dsDNA antibodies, inflammatory chemokines, and metabolite profiles on renal samples. Podocyte function and ultrastructure were detected. Publicly available single-cell RNA sequencing data and flow cytometry analysis were employed to investigate B cell subpopulations. Metabolomics analysis was adopted. SIRT1 and AMPK expression were analyzed by immunoblotting and immunofluorescence assays. Results: CK reduced proteinuria and protected podocyte ultrastructure in MRL/lpr mice by suppressing circulating anti-dsDNA antibodies and mitigating systemic inflammation. It activated B cell-specific SIRT1 and AMPK with Rhamnose accumulation, hindering the conversion of renal B cells into plasma cells. This cascade facilitated the resolution of local renal inflammation. CK facilitated the clearance of deposited immune complexes, thus reinstating podocyte morphology and mobility by normalizing the expression of nephrin and SYNPO. Conclusions: Our study reveals the synergistic interplay between SIRT1 and AMPK, orchestrating the restoration of renal B cell subsets. This process effectively mitigates immune complex deposition and preserves podocyte function. Accordingly, CK emerges as a promising therapeutic agent, potentially alleviating the hyperactivity of renal B cell subsets during LN.

GC-NCI-MS/MS를 이용한 모발 중 대마 대사체 분석의 측정불확도 평가 (Uncertainty evaluation of the analysis of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in hair by GC-NCI-MS/MS)

  • 김진영;이재일;정재철;서용준;인문교
    • 분석과학
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2011
  • 대마 흡연 여부 확인을 위해 사용되는 모발 중 대마 대사체 정량분석 결과의 측정불확도를 평가하였다. 대마초 성분 중 활성물질은 ${\Delta}^9$-tetrahydrocannabinol이며 대사과정을 거쳐 생성된 주요 대사체는 11-nor-9-carboxy-${\Delta}^9$-tetrahydrocannabinol (THC-COOH)이다. 따라서 생체 대사물질인 THC-COOH는 대마 흡연 여부를 판단하는 지표물질로 사용되고 있다. 실험방법은 모발의 세척, 건조, 질량측정, 세절, 가수분해, 비드를 이용한 액체-액체 추출, 유도체화 반응 및 기기분석 과정으로 구성되었다. 측정의 소급성이 유지될 수 있도록 상위 규정기로부터 하위 측정기까지 교정을 통해 확보하였다. 측정불확도 평가에 앞서 정량분석시 측정값에 영향을 주는 인자들을 찾아내고 각각의 요소들이 측정결과에 어떤 영향을 주는가를 살펴보았다. 산출 결과, 재현성, 회수율, 검정곡선, 표준물질, 질량측정의 요소 순으로 불확도에 영향을 미치고 있음을 확인하였고 재현성의 요소가 측정불확도에 가장 큰 영향을 미치고 있었다. 실제 대마 복용자의 모발을 분석한 결과 대마 대사체 농도 측정값에 대한 오차 범위의 상대불확도는 17% 이였으며, 본 연구의 측정불확도 평가 결과는 향후 분석방법의 개선 및 측정결과의 신뢰도 제고를 위한 근거자료로 활용할 예정이다.

Analysis of metabolomic patterns in thoroughbreds before and after exercise

  • Jang, Hyun-Jun;Kim, Duk-Moon;Kim, Kyu-Bong;Park, Jeong-Woong;Choi, Jae-Young;Oh, Jin Hyeog;Song, Ki-Duk;Kim, Suhkmann;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권11호
    • /
    • pp.1633-1642
    • /
    • 2017
  • Objective: Evaluation of exercise effects in racehorses is important in horseracing industry and animal health care. In this study, we compared metabolic patterns between before and after exercise to screen metabolic biomarkers for exercise effects in thoroughbreds. Methods: The concentration of metabolites in muscle, plasma, and urine was measured by $^1H$ nuclear magnetic resonance (NMR) spectroscopy analysis and the relative metabolite levels in the three samples were compared between before and after exercise. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA) and variable important plots and t-test was used for basic statistical analysis. Results: From $^1H$ NMR spectroscopy analysis, 35, 25, and 34 metabolites were detected in the muscle, plasma, and urine. Aspartate, betaine, choline, cysteine, ethanol, and threonine were increased over 2-fold in the muscle; propionate and trimethylamine were increased over 2-fold in the plasma; and alanine, glycerol, inosine, lactate, and pyruvate were increased over 2-fold whereas acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, hippurate, lysine, methionine, phenylacetylglycine, taurine, trigonelline, trimethylamine, and trimethylamine N-oxide were decreased below 0.5-fold in the urine. The OPLS-DA showed clear separation of the metabolic patterns before and after exercise in the muscle, plasma, and urine. Statistical analysis showed that after exercise, acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine trimethylamine, trimethylamine N-oxide, and trigonelline were significantly decreased and alanine, glycerol, inosine, lactate, and pyruvate were significantly increased in the urine (p<0.05). Conclusion: In conclusion, we analyzed integrated metabolic patterns in the muscle, plasma, and urine before and after exercise in racehorses. We found changed patterns of metabolites in the muscle, plasma, and urine of racehorses before and after exercise.

FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 곶감의 원산지 및 품종 식별 (Discrimination of Cultivars and Cultivation Origins from the Sepals of Dry Persimmon Using FT-IR Spectroscopy Combined with Multivariate Analysis)

  • 허설혜;김석원;민병환
    • 한국식품과학회지
    • /
    • 제47권1호
    • /
    • pp.20-26
    • /
    • 2015
  • 본 연구에서는 상업용 곶감의 꽃받침과 종자를 이용하여 대사체 수준에서의 원산지와 품종 식별 체계를 확립하였다. 실험에 이용된 곶감 시료는 국내산 곶감 함안수시(Hamansusi), 예천고종시(Yecheongojongsi), 산청단성시(Sancheongdanseongsi), 그리고 논산월하시(Nonsanwalhasi) 4개 품종과 국내에서 판매되고 있는 중국산 곶감 2개 종류의 꽃받침과 종자를 사용하였으며, 꽃받침과 종자 시료의 전세포 추출물로부터 FT-IR 스펙트럼 데이터를 기반으로 다변량 통계분석(PCA, PLS-DA)을 실시하였다. 이 결과 국내산 곶감 4품종과 중국산 곶감 2종류가 두 그룹으로 확연히 나뉘어지는 것을 확인할 수 있었다. 상업용 곶감의 꽃받침을 PLS regression을 실시한 결과 국내산과 중국산 곶감을 100% 예측할 수 있었다. 또한 곶감 종자를 이용하여 품종 식별한 결과 각 4개의 그룹으로 나뉘어지는 것을 확인할 수 있었으며, PLS regression을 실시한 결과 약 86%의 정확도로 품종 식별이 가능함을 알 수 있었다. FT-IR 스펙트럼 분석의 간편성과 신속성을 고려할 때, 본 연구 결과는 상업용 곶감에 대한 원산지나 품종 식별의 신속한 수단으로 활용할 수 있을 것으로 예상된다. 더 나아가 본 기술을 이용하여 다른 농산물의 원산지 또는 품종 식별 수단으로 활용이 가능할 것으로 기대된다.

염화비닐의 요중 대사물질인 thiodiglycolic acid의 분석을 위한 전처리 조건 (Pretreatment method of urinary thiodiglycolic acid as metabolite of vinyl chloride)

  • 홍주연;김치년;정재훈;장정환;노재훈
    • 한국산업보건학회지
    • /
    • 제9권1호
    • /
    • pp.23-40
    • /
    • 1999
  • The analysis of thiodiglycolic acid in urine has been used as an index of biological exposure to vinyl chloride. Unfortunately thiodiglycolic acid has a strong hydrophilic character, because it has two carboxylic groups, so that it can only be extracted with organic solvent with a great difficulty. Underivatized thiodiglycolic acid tends to tail because of non-specific interaction with the inert support. Therefore, esterification is the obvious first choice for derivatization of thiodiglycolic acid, particularly for gas chromatography. In this study, the focus of interest is to compare two method of esterifications (methylation and silylation). Methylation is to make the methyl ester of thiodiglycolic acid by reaction with diazomethane. Silylation is to make the trimethylsilyl ester of thiodiglycolic acid by reaction with N-trimethylsily-ldiethylamine. The results and conclusions are as the following: 1. The detection limit (sensitivity) of methylated thiodiglycolic acid was $5.00{\mu}g/m{\ell}$ and silylated thiodiglycolic acid was $3.07{\mu}g/m{\ell}$ by gas chromatography with flame ionization detector. 2. The optimal liquid-liquid extraction of thiodiglycolic acid was as following: To each of the tubes, $15m{\ell}$ of urine, concentrated sulfuric acid (pH 1 - 2) and 5 gsodium sulfate were added. The samples was extracted three times with $5m{\ell}$ ethylacetate each time. 3. The methylated thiodiglycolic acid was more stable than silylated thiodiglycolic acid in extractional solvent which contained humidity. 4. The precision (pooled coefficient of variation for 4 days) of the analysis was 0.07324 in methylated thiodiglycolic acid with external standard calibration, and 0.07033 in methylated thiodiglycolic acid with internal standard calibration. 5. The precision (pooled coefficient of variation for 4 days) of the analysis was 0.10914 in silylated thiodiglycolic acid with external standard calibration, and 0.13602 in silylated thiodiglycolic acid with internal standard calibration. From the above results, the analysis of methylated thiodiglycolic acid was more sensitive (limit of detection) than silylated thiodiglycolic acid by gas chromatography. However, the methylated thiodiglycolic acid was stable in the humidity and was separated sharply on chromatogram. Also, analysis of methylated thiodiglycolic acid was more precise (pooled coefficient of variation for 4 days) than silylated thiodiglycolic acid. In conclusion, it is established that the analysis of methylated thiodiglycolic acid is appropriate for biological monitoring of exposure to vinyl chloride.

  • PDF

마약남용자 11명의 타액 중 메스암페타민의 분석 (Analysis of Methamphetamine and Amphetamine in Oral Fluid of Eleven Drug Abusers)

  • 김은미;이주선;최혜영;최화경;정희선
    • 약학회지
    • /
    • 제52권6호
    • /
    • pp.419-425
    • /
    • 2008
  • A qualitative and quantitative analytical method was developed for detection of methamphetamine (MA) and its main metabolite amphetamine (AM) in oral fluid. Oral fluids of eleven drug abusers were provided by Police, specimens were collected by stimulation with a cotton swab treated with 20 mg of citric acid ($Salivette^{(R)}$; Sarstedt, USA). As the preliminary test, oral fluid samples were screened for amphetamines by Fluorescence Polarization Immunoassay (TDxFLx, Abbott Co.). Extraction for MA was performed using solid-phase extraction (SPE) by $RapidTrace^{TM}$ (Zymark, USA) with mixed mode cation exchange cartridge, CLEAN $SCREEN^{(R)}$ (130 mg/3 ml, UCT) after dilution with phosphate buffer. Samples were evaporated and derivatized by pentafluoropropionic acid anhydride (PFPA). Quantitation of MA and AM was performed by gas chromatography-mass spectrometry (GC-MS) using selective ion monitoring (SIM), the quantitation ions were m/z 204 (MA), 208 (MA-$D_5$), 190 (AM) and 194 (AM-$D_5$). The selectivity, linearity of calibration, limit of detection (LOD) and quantification (LOQ) within- and between day precision, accuracy and recoveries were examined as parts of the method validation. All oral fluid samples gave positive results to immunoassay for MA (cut-off level, 50 ng/ml as d-amphetamine). Concentrations of MA and AM by GC-MS in eleven samples were ranged 104.2${\sim}$4603.3 ng/ml and 32.4${\sim}$268.6 ng/ml, respectively. Extracted calibration curves of MA and AM were linear over the two concentration range of 1${\sim}$100 and 50${\sim}$1000 ng/ml with correlation coefficient of above 0.999. LOQ of MA and AM was 1 and 3 ng/ml, respectively. The intraand inter-day run precisions (CV) for MA and AM were less than 10%, and the accuracies (bias) for MA and AM were also less than 10% at the two different concentrations 5 and 100 ng/ml at low calibration range, 50 and 1000 ng/ml at high calibration range. The absolute recoveries of MA and AM at low and high calibration ranges were more than 82% and 75%, respectively. In this study the qualitative and quantitative analytical method of MA in oral fluid was established. Oral fluid testing may detect drug use in past hours because of its shorter detection window than urine, and be useful in post-accident situations. So oral fluids will be most useful for testing drug abuse in the driving under the influence of drug (DUID) as the alternative specimens of urine.