Browse > Article
http://dx.doi.org/10.1016/j.jgr.2019.07.001

AKT1-targeted proapoptotic activity of compound K in human breast cancer cells  

Choi, Eunju (Department of Integrative Biotechnology, Sungkyunkwan University)
Kim, Eunji (Department of Integrative Biotechnology, Sungkyunkwan University)
Kim, Ji Hye (Department of Integrative Biotechnology, Sungkyunkwan University)
Yoon, Keejung (Department of Integrative Biotechnology, Sungkyunkwan University)
Kim, Sunggyu (Research and Business Foundation, Sungkyunkwan University)
Lee, Jongsung (Department of Integrative Biotechnology, Sungkyunkwan University)
Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University)
Publication Information
Journal of Ginseng Research / v.43, no.4, 2019 , pp. 692-698 More about this Journal
Abstract
Background: Breast cancer is a severe disease and the second leading cause of cancer death in women worldwide. To surmount this, various diagnosis and treatment options for breast cancer have been developed. One of the most effective strategies for cancer treatment is to induce apoptosis using naturally occurring compounds. Compound K (CK) is a ginseng saponin metabolite generated by human intestinal bacteria. CK has been studied for its cardioprotective, antiinflammatory, and liver-protective effects; however, the role of CK in breast cancer is not fully understood. Methods: To investigate the anticancer effects of CK in SKBR3 and MDA-MB-231 cells, cell viability assays and flow cytometry analysis were used. In addition, the direct targets of CK anticancer activity were identified using immunoblotting analysis and overexpression experiments. Invasion, migration, and clonogenic assays were carried out to determine the effects of CK on cancer metastasis. Results: CK-induced cell apoptosis in SKBR3 cells as determined through 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assays, propidium iodide (PI) and annexin V staining, and morphological changes. CK increased the cleaved forms of caspase-7, caspase-8, and caspase-9, whereas the expression of Bcl-2 was reduced by CK. In assays probing the cell survival pathway, CK activated only AKT1 and not AKT2. Moreover, CK inhibited breast cancer cell invasion, migration, and colony formation. Through regulation of AKT1 activity, CK exerts anticancer effects by inducing apoptosis. Conclusion: Our results suggest that CK could be used as a therapeutic compound for breast cancer.
Keywords
AKT1; Apoptosis; Cancer; Compound K; Panax ginseng;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Shin D-H, Leem D-G, Shin J-S, Kim J-I, Kim K-T, Choi SY, Lee M-H, Choi J-H, Lee K-T. Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells. J Ginseng Res 2018;42:165-74.   DOI
2 Wang Y, Liu J, Zhang Z, Bi P, Qi Z, Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci Lett 2011;487:70-2.   DOI
3 Zhang K, Li Y. Effects of ginsenoside compound K combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in MCF-7 cells of human breast cancer. Pharm Biol 2016;54:561-8.   DOI
4 Lee CS, Bae IH, Han J, Choi Gy, Hwang KH, Kim DH, Yeom MH, Park YH, Park M. Compound K inhibits MMP-1 expression through suppression of c-Srcdependent ERK activation in TNF-a-stimulated dermal fibroblast. Exp Dermatol 2014;23:819-24.   DOI
5 Wu H, Chen J, Wang Q, Jia X, Song S, Yuan P, Liu K, Liu L, Zhang Y, Zhou A. Ginsenoside metabolite compound K attenuates inflammatory responses of adjuvant-induced arthritis rats. Immunopharmacol Imunotoxicol 2014;36:124-9.   DOI
6 Hong YH, Kim D, Nam G, Yoo S, Han SY, Jeong SG, Kim E, Jeong D, Yoon K, Kim S, et al. Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng. J Ginseng Res 2018;42:81-9.   DOI
7 Baek K-S, Hong YD, Kim Y, Sung NY, Yang S, Lee KM, Park JY, Park JS, Rho HS, Shin SS. Anti-inflammatory activity of AP-SF, a ginsenoside-enriched fraction, from Korean ginseng. J Ginseng Res 2015;39:155-61.   DOI
8 Kim E, Kim D, Yoo S, Hong YH, Han SY, Jeong S, Jeong D, Kim JH, Cho JY, Park J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 2018;42:218-24.   DOI
9 Kim E, Yi YS, Son YJ, Han SY, Kim DH, Nam G, Hossain MA, Kim JH, Park J, Cho JY. BIOGF1K, a compound K-rich fraction of ginseng, plays an antiinflammatory role by targeting an activator protein-1 signaling pathway in RAW264.7 macrophage-like cells. J Ginseng Res 2018;42:233-7.   DOI
10 Lee SJ, Lee JS, Lee E, Lim T-G, Byun S. The ginsenoside metabolite compound K inhibits hormone-independent breast cancer through downregulation of cyclin D1. J Funct Foods 2018;46:159-66.   DOI
11 Rafehi H, Orlowski C, Georgiadis GT, Ververis K, El-Osta A, Karagiannis TC. Clonogenic assay: adherent cells. J Vis Exp 2011;13:pii2573.
12 Park JG, Kang W-S, Park KT, Park DJ, Aravinthan A, Kim J-H, Cho JY. Anticancer effect of joboksansam, Korean wild ginseng germinated from bird feces. J Ginseng Res 2016;40:304-8.   DOI
13 Sohn S-H, Kim S-K, Kim Y-O, Kim H-D, Shin Y-S, Yang S-O, Kim S-Y, Lee S-W. A comparison of antioxidant activity of Korean White and Red Ginsengs on H2O2-induced oxidative stress in HepG2 hepatoma cells. J Ginseng Res 2013;37:442.   DOI
14 Kim JH, Lee YG, Yoo S, Oh J, Jeong D, Song WK, Yoo BC, Rhee MH, Park J, Cha Sh. Involvement of Src and the actin cytoskeleton in the antitumorigenic action of adenosine dialdehyde. Biochem Pharmacol 2013;85:1042-56.   DOI
15 Yamaguchi H, Wyckoff J, Condeelis J. Cell migration in tumors. Curr Opin Cell Biol 2005;17:559-64.   DOI
16 Liu J, He Y, Zhang D, Cai Y, Zhang C, Zhang P, Zhu H, Xu N, Liang S. In vitro anticancer effects of two novel phenanthroindolizidine alkaloid compounds on human colon and liver cancer cells. Mol Med Rep 2017;16:2595-603.   DOI
17 Franken NA, Rodermond HM, Stap J, Haveman J, Van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006;1:2315.   DOI
18 Yue PY, Wong DY, Wu P, Leung P, Mak N, Yeung H, Liu L, Cai Z, Jiang Z-H, Fan T. The angiosuppressive effects of 20 (R)-ginsenoside Rg3. Biochem Pharmacol 2006;72:437-45.   DOI
19 Law CK-M, Kwok H-H, Poon P-Y, Lau C-C, Jiang Z-H, Tai WC-S, Hsiao WW-L, Mak N-K, Yue PY-K, Wong RN-S. Ginsenoside compound K induces apoptosis in nasopharyngeal carcinoma cells via activation of apoptosis-inducing factor. Chin Med 2014;9:11.   DOI
20 Xu T-m, Cui M-h, Ying X, Gu L-p, Jiang X, Su M-m, Wang D-d, Wang W-j. Inhibitory effect of ginsenoside Rg3 on ovarian cancer metastasis. Chin Med J 2008;121:1394-7.   DOI
21 Park J-S, Park E-M, Kim D-H, Jung K, Jung J-S, Lee E-J, Hyun J-W, Kang JL, Kim H-S. Anti-inflammatory mechanism of ginseng saponins in activated microglia. J Neuroimmunol 2009;209:40-9.   DOI
22 Rausch W-D, Liu S, Gille G, Radad K. Neuroprotective effects of ginsenosides. Acta Neurobiol Exp (Wars) 2006;66:369-75.
23 Tseng P-H, Wang Y-C, Weng S-C, Weng J-R, Chen C-S, Brueggemeier RW, Shapiro CL, Chen C-Y, Dunn SE, Pollak M. Overcoming trastuzumab resistance in HER2-overexpressing breast cancer cells by using a novel celecoxib-derived phosphoinositide-dependent kinase-1 inhibitor. Mol Pharmacol 2006;70:1534-41.   DOI
24 Lee E-S, Choi J-S, Kim MS, You HJ, Ji GE, Kang Y-H. Ginsenoside metabolite compound K differentially antagonizing tumor necrosis factor-${\alpha}$-induced monocyteeendothelial trafficking. Chem Biol Interact 2011;194:13-22.   DOI
25 Li W, Liu Y, Zhang J-W, Ai C-Z, Xiang N, Liu H-X, Yang L. Anti-androgen-independent prostate cancer effects of ginsenoside metabolites in vitro: mechanism and possible structure-activity relationship investigation. Arch Pharm Res 2009;32:49.   DOI
26 Kim A, Kang K, Kim H, Kim D, Choi Y, Lee S, Hyun J. A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis 2013;4:e750.   DOI
27 Fadeel B, Orrenius S. Apoptosis: a basic biological phenomenon with wideranging implications in human disease. J Intern Med 2005;258:479-517.   DOI
28 Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 2005;55:178-94.   DOI
29 Van Cruchten S, Van Den Broeck W. Morphological and biochemical aspects of apoptosis, oncosis and necrosis. Anat Histol Embryol 2002;31:214-23.   DOI
30 Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C. A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. J Immunol Methods 1995;184:39-51.   DOI
31 Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 2010;11:621.   DOI
32 Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 1999;15:269-90.   DOI
33 Park JG, Son Y-J, Lee TH, Baek NJ, Yoon DH, Kim TW, Aravinthan A, Hong S, Kim J-H, Sung G-H. Anticancer efficacy of Cordyceps militaris ethanol extract in a xenografted leukemia model. Evid Based Complement Alternat Med 2017;2017:8474703.
34 Liu Q, Dong H-W, Sun W-G, Liu M, Ibla JC, Liu L-X, Parry JW, Han X-H, Li M-S, Liu J-R. Apoptosis initiation of ${\beta}$-ionone in SGC-7901 gastric carcinoma cancer cells via a PI3K-AKT pathway. Arch Toxicol 2013;87:481-90.   DOI
35 Chia S, Gandhi S, Joy A, Edwards S, Gorr M, Hopkins S, Kondejewski J, Ayoub J, Califaretti N, Rayson D. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for the treatment of breast cancer. Curr Oncol 2015;22:33.   DOI
36 Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 $(PKB{\beta})$. Science 2001;292:1728-31.   DOI
37 Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005;9:59-71.   DOI
38 Joy A, Ghosh M, Fernandes R, Clemons M. Systemic treatment approaches in her2-negative advanced breast cancerdguidance on the guidelines. Curr Oncol 2015;22:S29.   DOI
39 Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, Lanari C, Novaro V. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep 2017;7:44244.   DOI
40 Chen X-J, Zhang X-J, Shui Y-M, Wan J-B, Gao J-L. Anticancer activities of protopanaxadiol-and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016;2016:5738694.
41 Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin 2015;65:5-29. 2015.   DOI
42 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics. CA Cancer J Clin 2012;65:87-108. 2015.
43 Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003;200:290-7.   DOI
44 Schmitt CA. Senescence, apoptosis and therapydcutting the lifelines of cancer. Nat Rev Cancer 2003;3:286.   DOI
45 Sreelatha S, Jeyachitra A, Padma P. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem Toxicol 2011;49:1270-5.   DOI
46 Zheng Z-Z, Ming Y-L, Chen L-H, Zheng G-H, Liu S-S, Chen Q-X. Compound Kinduced apoptosis of human hepatocellular carcinoma MHCC97-H cells in vitro. Oncol Rep 2014;32:325-31.   DOI