• Title/Summary/Keyword: metabolite analysis

Search Result 447, Processing Time 0.025 seconds

Metabolite analysis in the type 1 diabetic mouse model

  • Park, Sung Jean
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Type 1 diabetes mellitus (T1DM) is caused by insufficient production of insulin, which is involved in carbohydrate metabolism. Type 2 diabetes mellitus (T2DM) has insulin resistance in which cells do not respond adequately to insulin. The purpose of this study was to estimate the characteristics of type 1 diabetes using streptozotocin-treated mice (STZ-mouse). The sera samples were collected from the models of hyperglycemic mouse and healthy mouse. Based on the pair-wise comparison, five metabolites were found to be noticeable: glucose, malonic acid, 3-hyroxybutyrate, methanol, and tryptophan. It was very natural glucose was upregulated in STZ-mouse. 3-hyroxybutyrate was also increased in the model. However, malonic acid, tryptophan, and methanol was downregulated in STZ-mouse. Several metabolites acetoacetate, acetone, alanine, arginine, asparagine, histidine, lysine, malate, methionine, ornithine, proline, propylene glycol, threonine, tyrosine, and urea tended to be varied in STZ-mouse while the statistical significance was not stratified for the variation. The multivariate model of PCA clearly showed the group separation between healthy control and STZ-mouse. The most significant metabolites that contributed the group separation included glucose, citrate, ascorbate, and lactate. Lactate did not show the statistical significance of change in t-test while it tends to down-regulated both in DNP and Diabetes.

Change of growth and carotenoid concentration in Korean fir with varied annual temperature on Mt. Halla

  • Chung-Kwang Lee;Young-Kyu Hong;Jin-Wook Kim;Sung-Chul Kim;Jinhee Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.331-339
    • /
    • 2022
  • Deforestation and conservation of coniferous forest have been recognized as critical issues in Korea due to climate change. The main purpose of this research was to monitor changes of secondary metabolite contents and growth of Korean fir (Abies koreana) according to the temperature change in Mt. Halla. The Korean fir located at three different regions, Yeongsil, Witseoreum, and Jindallaebat, was monitored in April, July, and October from 2016 to 2018 and secondary metabolites, specifically lutein, α-carotenoid, and β-carotenoid, were analysed with high performance liquid chromatography. The results showed that average concentrations of lutein, α-carotenoid, and β-carotenoid were 0.82 - 23.30, 0.02 - 2.01, and 0.11 - 2.84 ㎍·g-1 and the highest concentration of secondary metabolite was observed in October compared to April and July. The average length and width of Korean fir in the three regions were 11.84 - 20.70 and 1.78 - 2.41 mm from 2016 - 2018. A correlation analysis showed that the concentrations of all three secondary metabolites were negatively correlated with temperature and a significant difference was observed between temperature and lutein concentration in Korean fir. Overall, growth and production of secondary metabolites in Korean fir highly depended on the temperature, and global warming thus might have an adverse effect on the growth and physiological changes of Korean fir in Mt. Halla.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Comparative untargeted metabolomic analysis of Korean soybean four varieties (Glycine max (L.) Merr.) based on liquid chromatography mass spectrometry (국내콩 4품종의 LC-MS 기반 비표적대사체 비교평가)

  • Eun-Ha Kim;Soo-Yun Park;Sang-Gu Lee;Hyoun-Min Park;Oh Suk Yu;Yun-Young Kang;Myeong Ji Kim;Jung-Won Jung;Seon-Woo Oh
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.439-446
    • /
    • 2022
  • Soybean is a crop with high-quality of protein and oil, and it is one of the most widely used genetically modified (GM) crops in the world today. In South Korea, Kwangan is the most utilized variety as a parental line for GM soybean development. In this study, untargeted LC-MS metabolomic approaches were used to compare metabolite profiles of Kwangan and three other commercial varieties cultivated in Gunwi and Jeonju in 2020 year. Metabolomic studies revealed that the 4 soybean varieties were distinct based on the partial least squares-discriminant analysis (PLS-DA) score plots; 18 metabolites contributed to variety distinction, including phenylalanine, isoflavones, and fatty acids. All varieties were clearly differentiated by location on the PLS-DA score plot, indicating that the growing environment is also attributable to metabolite variability. In particular, isoflavones and linolenic acid levels in Kwangan were significantly lower and higher, respectively compared to those of the three varieties. It was discussed that it might need to include more diverse conventional varieties as comparators in regard to metabolic characteristics of Kwangan for the assessment of substantial equivalence biogenetically engineered soybeans in a Kwangan-variety background.

Determination and Validation of an Analytical Method for Spiropidion and Its Metabolite Spiropidion-enol (SYN547305) in Agricultural Products with LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Spiropidion 및 대사산물 Spiropidion-enol (SYN547305) 시험법 개발 및 검증)

  • Gu, Sun Young;Lee, Su Jung;Shin, Hye-Sun;Kang, Sung Eun;Chung, Yun Mi;Lee, Jung Mi;Jung, Yong-hyun;Moon, Guiim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • BACKGROUND: Spiropidion and its metabolite are tetramic acid insecticide and require the establishment of an official analysis method for the safety management because they are newly registered in Korea. Therefore, this study was to determine the analysis method of residual spiropidion and its metabolite for the five representative agricultural products. METHODS AND RESULTS: Three QuEChERS methods (original, AOAC, and EN method) were applied to optimize the extraction method, and the EN method was finally selected by comparing the recovery test and matrix effect results. Various adsorbent agents were applied to establish the clean up method. As a result, the recovery of spiropidion was reduced when using the dispersive-SPE method with MgSO4, primary secondary amine (PSA), graphitized carbon black (GCB) and octadecyl (C18) in soybean. Color interference was minimized by selecting the case including GCB and C18 in addition to MgSO4. This method was established as the final analysis method. LC-MS/MS was used for the analysis by considering the selectivity and sensitivity of the target pesticide and the analysis was performed in MRM mode. The results of the recovery test using the established analysis method and inter laboratory validation showed a valid range of 79.4-108.4%, with relative standard deviation and coefficient of variation were less than 7.2% and 14.4%, respectively. CONCLUSION(S): Spiropidion and its metabolite could be analyzed with a modified QuEChERS method, and the established method would be widely available to ensure the safety of residual insecticides in Korea.

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Quantitative Determination of Styrene in Blood and Mandelic Acid in Urine of the Occupationally Styrene-exposed Workers

  • Yang, Jeong-Sun
    • Archives of Pharmacal Research
    • /
    • v.17 no.2
    • /
    • pp.76-79
    • /
    • 1994
  • The concentration of styrne in blood of the occupationally syrene-exposed workers was checked by gas chromatographic headspace analysis. Mandelic acd in urine, that is a major metabolite of styrene, and hippuric acid wre also analyzed by high performance liquid chromatography. For the biological monitoring of styrene-exposed workers, the routine method of the quantitative determination of styrene nad its metabolites in the biolgical samples were studied.

  • PDF

Effects of Malotilate on Levels of Ethanol and Acetaldehyde in Blood (혈중 Ethanol 및 Acetaldehyde의 농도에 미치는 Malotilate의 영향)

  • 허인회;이상준;주왕기;허문영;김형춘;송계용
    • YAKHAK HOEJI
    • /
    • v.31 no.6
    • /
    • pp.399-401
    • /
    • 1987
  • A gas chromatographic utilizing procedure headspace gas analysis is performed to study effect of malotilate on levels of ethanol and its metabolite acetaldehyde in a blood sample from the rat. The concentrations of ethanol and acetaldehyde were determined simultaneously at 1, 3, and 6h after ethanol administration. Our results would suggest the malotilate could promote clearances of ethanol and acetaldehyde in blood, and could accelerate it, especially, in $CCl_4$ pretreated rats.

  • PDF