Browse > Article
http://dx.doi.org/10.6564/JKMRS.2021.25.3.033

Metabolite analysis in the type 1 diabetic mouse model  

Park, Sung Jean (College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.25, no.3, 2021 , pp. 33-38 More about this Journal
Abstract
Type 1 diabetes mellitus (T1DM) is caused by insufficient production of insulin, which is involved in carbohydrate metabolism. Type 2 diabetes mellitus (T2DM) has insulin resistance in which cells do not respond adequately to insulin. The purpose of this study was to estimate the characteristics of type 1 diabetes using streptozotocin-treated mice (STZ-mouse). The sera samples were collected from the models of hyperglycemic mouse and healthy mouse. Based on the pair-wise comparison, five metabolites were found to be noticeable: glucose, malonic acid, 3-hyroxybutyrate, methanol, and tryptophan. It was very natural glucose was upregulated in STZ-mouse. 3-hyroxybutyrate was also increased in the model. However, malonic acid, tryptophan, and methanol was downregulated in STZ-mouse. Several metabolites acetoacetate, acetone, alanine, arginine, asparagine, histidine, lysine, malate, methionine, ornithine, proline, propylene glycol, threonine, tyrosine, and urea tended to be varied in STZ-mouse while the statistical significance was not stratified for the variation. The multivariate model of PCA clearly showed the group separation between healthy control and STZ-mouse. The most significant metabolites that contributed the group separation included glucose, citrate, ascorbate, and lactate. Lactate did not show the statistical significance of change in t-test while it tends to down-regulated both in DNP and Diabetes.
Keywords
Diabetes; Type I; Metabolite; NMR; Streptozotocin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Liu, H. Zhang, S. Wang, Y. Guo, X. Fang, B. Zheng, W. Gao, H. Yu, Z. Chen, R. J. Roman and F. Fan, Am. J. Physiol. Heart Circ. Physiol. 320, H549 (2021)   DOI
2 J. H. Lee, M. Samsuzzaman, M. G. Park, S. J. Park and S. Y. Kim. Int. J. Biol. Macromol. 187, 409 (2021)   DOI
3 J. Rui, S. Deng, A. L. Perdigoto, G. Ponath, R. Kursawe, N. Lawlor, T. Sumida, M. Levine-Ritterman, M. L. Stitzel and D. Pitt, Nat. Commun. 12, 5074 (2021)   DOI
4 L. Wigger, M. Barovic, A.-D. Brunner, F. Marzetta, E. Schoniger, F. Mehl, N. Kipke, D. Friedland, F. Burdet and C. Kessler, Nat. Metab. 3, 1017 (2021)   DOI
5 L. Ikelle, M. I. Naash and M. R. Al-Ubaidi, Adv. Exp. Med. Biol. 1185, 335 (2019)   DOI
6 N. C. Holoman, J. J. Aiello, T. D. Trobenter, M. J. Tarchick, M. R. Kozlowski, E. R. Makowski, C. Darryl, C. Singh, J. E. Sears and I. S. Samuels, J. Neurosci. 41, 3275 (2021)   DOI
7 J. Danielsson, P. Kangastupa, T. Laatikainen, M. Aalto and O. Niemela, World J. Gastroenterol. 20, 11743 (2014)   DOI
8 J. Blahova, M. Martiniakova, M. Babikova, V. Kovacova, V. Mondockova and R. Omelka, Pharmaceuticals (Basel) 14, 806 (2021)   DOI
9 K. V. Gantenbein and C. Kanaka-Gantenbein. Nutrients 13, 1951 (2021)   DOI
10 H. C. Park, Y. K. Lee, A. Cho, C. H. Han, J. W. Noh, Y. J. Shin, S. H. Bae and H. Kim. PLoS One 14, e0220506 (2019)   DOI
11 K. Sanchez-Alegria, C. E. Bastian-Eugenio, L. Vaca and C. Arias. FASEB J. 35, e21712 (2021)
12 X Pan, Y Zhu, X Wu, L Liu, R Ying, L Wang, N Du, J Zhang, J Jin, X Meng, F Dai and Y Huang. Eur. J. Pharmacol. 893, 173816 (2021)   DOI
13 K. Abramov-Harpaz, M. Pollock-Gagolashvili and Y. Miller. ACS Chem. Neurosci. 12, 3266 (2021)   DOI
14 S. J. Park and J. W. Choi, Arch. Pharm. Res. 43, 1017 (2020)   DOI
15 A. Guleria, A. Pratap, D. Dubey, A. Rawat, S. Chaurasia, E. Sukesh, S. Phatak, S. Ajmani, U. Kumar and C. L. Khetrapal, Sci. Rep. 6, 35309 (2016)   DOI
16 M. Bylesjo, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes and J. Trygg, J. Chemom. 20, 341 (2006)   DOI
17 J.-S. Hyun, J. Yang, H.-H. Kim, Y.-B. Lee and S. J. Park, J. Kor. Magn. Reson. Soc. 22, 149 (2018)   DOI
18 A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson and J. C. Lindon, Anal. Chem. 78, 2262 (2006)   DOI
19 F. Dieterle, A. Ross, G. Schlotterbeck and H. Senn, Anal. Chem. 78, 4281 (2006)   DOI
20 J. Trygg, E. Holmes and T. Lundstedt, J. Proteome Res. 6, 469 (2007)   DOI
21 S. Wiklund, E. Johansson, L. Sjostrom, E. J. Mellerowicz, U. Edlund, J. P. Shockcor, J. Gottfries, T. Moritz and J. Trygg, Anal. Chem. 80, 115 (2008)   DOI
22 F. Pesarin, Multivariate permutation tests: with applications in biostatistics: Wiley Chichester; 2001
23 B. Worley, S. Halouska and R. Powers, Analytical biochemistry 433, 102 (2013)   DOI
24 J. D. Spurrier, J. Nonparametric Stat. 15, 685 (2003)   DOI
25 S. Hur, H. Lee, A. Shin and S. J. Park, J. Kor. Mag. Reson. Soc. 18, 10 (2014)   DOI
26 F. Zhang, R. Guo, W. Cui, L. Wang, J. Xiao, J. Shang and Z. Zhao, Ren. Fail. 43, 980 (2021)   DOI
27 M. S. Bjune, C. Lindquist, M. H. Stafsnes, B. Bjorndal, P. Bruheim, T. A. Aloysius, O. Nygard, J. Skorve, L. Madsen and S. N. Dankel, Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1866, 158887 (2021)   DOI
28 C. A. Daykin, P. J. Foxall, S. C. Connor, J. C. Lindon and J. K. Nicholson. Anal. Biochem. 304, 220 (2002)   DOI