• Title/Summary/Keyword: metabolite analysis

Search Result 447, Processing Time 0.022 seconds

Complete Chloroplast Genome assembly and Annotation of Milk Thistle (Silybum marianum) and Phylogenetic Analysis

  • Hwajin Jung;Yedomon Ange Bovys Zoclanclounon;Jeongwoo Lee;Taeho Lee;Jeonggu Kim;Guhwang Park;Keunpyo Lee;Kwanghoon An;Jeehyoung Shim;Joonghyoun Chin;Suyoung Hong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.210-210
    • /
    • 2022
  • Silybum marianum is an annual or biennial plant from the Asteraceae family. It can grow in low-nutrient soil and drought conditions, making it easy to cultivate. From the seed, a specialized plant metabolite called silymarin (flavonolignan complex) is produced and is known to alleviate the liver from hepatitis and toxins damages. To infer the phylogenetic placement of a Korean milk thistle, we conducted a chloroplast assembly and annotation following by a comparison with existing Chinese reference genome (NC_028027). The chloroplast genome structure was highly similar with an assembly size of 152,642 bp, an 153,202 bp for Korean and Chinese milk thistle respectively. Moreover, there were similarities at the gene level, coding sequence (n = 82), transfer RNA (n = 31) and ribosomal RNA (n = 4). From all coding sequences gene set, the phylogenetic tree inference placed the Korean cultivar into the milk thistle clade; corroborating the expected tree. Moreover, an investigation the tree based only on the ycf1 gene confirmed the same tree; suggesting that ycf1 gene is a potential marker for DNA barcoding and population diversity study in milk thistle genus. Overall, the provided data represents a valuable resource for population genomics and species-centered determination since several species have been reported in the Silybum genus.

  • PDF

Constipation anti-aging effects by dairy-based lactic acid bacteria

  • Mohamad Hafis Jaafar;Pei Xu;Uma-Mageswary Mageswaran;Shandra-Devi Balasubramaniam;Maheswaran Solayappan;Jia-Jie Woon;Cindy Shuan-Ju Teh;Svetoslav Dimitrov Todorov;Yong-Ha Park;Guoxia Liu;Min-Tze Liong
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.178-203
    • /
    • 2024
  • Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.

Metabolomic Profiles in Patients with Cervical Cancer Undergoing Cisplatin and Radiation Therapy

  • Seo-Yeon Choi;Suin Kim;Ji-Young Jeon;Min-Gul Kim;Sun-Young Lee;Kwang-Hee Shin
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.379-389
    • /
    • 2024
  • This study was aimed to evaluate endogenous metabolic changes before and after cisplatin and radiation therapy in patients with cervical cancer via untargeted metabolomic analysis using plasma samples. A total of 13 cervical cancer patients were enrolled in this study. Plasma samples were collected from each patient on two occasions: approximately one week before therapy (P1) and after completion of cisplatin and radiation therapy (P2). Of the 13 patients, 12 patients received both cisplatin and radiation therapy, whereas one patient received radiation therapy alone. The samples were analyzed using the Ultimate 3000 coupled with Q ExactiveTM Focus Hybrid Quadrupole-OrbitrapTM mass spectrometry (Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic separation utilized a Kinetex C18 column 2.1×100 mm (2.6 ㎛) (Phenomenex, Torrance, CA, USA), and the temperature was maintained at 40℃. Following P2, there were statistically significant increases in the concentrations of indoxyl sulfate, phenylacetylglutamine, Lysophosphatidyethanolamine (LysoPE) (18:1), and indole-3-acetic acid compared with the concentrations observed at P1. Specifically, in the human papillomavirus (HPV) noninfection group, indoxyl sulfate, LysoPE (18:1), and phenylacetylglutamine showed statistically significant increases at P2 compared with P1. No significant changes in metabolite concentrations were observed in the HPV infection group. Indoxyl sulfate, LysoPE (18:1), phenylacetylglutamine, and indole-3-acetic acid were significantly increased following cisplatin and radiation therapy.

Essential oils as growth-promoting additives on performance, nutrient digestibility, cecal microbes, and serum metabolites of broiler chickens: a meta-analysis

  • Irawan, Agung;Hidayat, Cecep;Jayanegara, Anuraga;Ratriyanto, Adi
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1499-1513
    • /
    • 2021
  • Objective: The purpose of this meta-analysis was to evaluate the effect of dietary essential oils (EOs) on productive performance, nutrient digestibility, and serum metabolite profiles of broiler chickens and to compare their effectiveness as growth-promoting additives against antibiotics. Methods: Peer-reviewed articles were retrieved from Web of Science, Science Direct, PubMed, and Google scholar and selected based on pre-determined criteria. A total of 41 articles containing 55 experiments with 163 treatment units were eligible for analyses. Data were subjected to a meta-analysis based on mixed model methodology considering the doses of EOs as fixed effects and the different studies as random effects. Results: Results showed a linear increase (p<0.001) on body weight gain (BWG) where Antibiotics (FCR) and average daily feed intake decreased (p<0.001) linearly with an increasing dose of EOs. Positive effects were observed on the increased (p<0.01) digestibility of dry matter, crude protein, ether extract, and cecal Lactobacillus while Escherichia coli (E. coli) population in the cecum decreased (p<0.001) linearly. There was a quadratic effect on the weight of gizzard (p<0.01), spleen (p<0.05), bursa of fabricius (p<0.001), and liver (p<0.10) while carcass, abdominal fat, and pancreas increased (p<0.01) linearly. The dose of EOs linearly increased high density lipoprotein, glucose, protein, and globulin concentrations (p<0.01). In comparison to control and antibiotics, all type of EOs significantly reduced (p<0.001) FCR and tended to increase (p<0.1) BWG and final body weight. Cinnamaldehyde-compound was the only EOs type showing a tendency to increase (p<0.1) carcass weight, albumin, and protein of serum metabolites while this EOs together with EOs-Blend 1 decreased (p<0.01) E. coli population. Low density lipoprotein concentration decreased (p<0.05) with antibiotics and carvacrol-based compound when compared to the control group. Conclusion: This evidence confirms that EOs are suitable to be used as growth promoters and their economical benefit appears to be promising.

Discovery and validation of PURA as a transcription target of 20(S)-protopanaxadiol: Implications for the treatment of cognitive dysfunction

  • Feiyan Chen;Wenjing Zhang;Shuyi Xu;Hantao Zhang;Lin Chen;Cuihua Chen;Zhu Zhu;Yunan Zhao
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.662-671
    • /
    • 2023
  • Background: 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, has prominent benefits for the central nervous system, especially in improving learning and memory. However, its transcriptional targets in brain tissue remain unknown. Methods: In this study, we first used mass spectrometry-based drug affinity responsive target stability (DARTS) to identify the potential proteins of ginsenosides and intersected them with the transcription factor library. Second, the transcription factor PURA was confirmed as a target of PPD by biolayer interferometry (BLI) and molecular docking. Next, the effect of PPD on the transcriptional levels of target genes of PURA in brain tissues was determined by qRT-PCR. Finally, bioinformatics analysis was used to analyze the potential biological features of these target proteins. Results: The results showed three overlapping transcription factors between the proteomics of DARTS and transcription factor library. BLI analysis further showed that PPD had a higher direct interaction with PURA than parent ginsenosides. Subsequently, BLI kinetic analysis, molecular docking, and mutations in key amino acids of PURA indicated that PPD specifically bound to PURA. The results of qRT-PCR showed that PPD could increase the transcription levels of PURA target genes in brain. Finally, bioinformatics analysis showed that these target proteins were involved in learning and memory function. Conclusion: The above-mentioned findings indicate that PURA is a transcription target of PPD in brain, and PPD upregulate the transcription levels of target genes related to cognitive dysfunction by binding PURA, which could provide a chemical and biological basis for the study of treating cognitive impairment by targeting PURA.

Mass-Based Metabolomic Analysis of Lactobacillus sakei and Its Growth Media at Different Growth Phases

  • Lee, Sang Bong;Rhee, Young Kyoung;Gu, Eun-Ji;Kim, Dong-Wook;Jang, Gwang-Ju;Song, Seong-Hwa;Lee, Jae-In;Kim, Bo-Min;Lee, Hyeon-Jeong;Hong, Hee-Do;Cho, Chang-Won;Kim, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.925-932
    • /
    • 2017
  • Changes in the metabolite profiles of Lactobacillus sakei and its growth media, based on different culture times (0, 6, 12, and 24 h), were investigated using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS with partial least squares discriminant analysis, in order to understand the growth characteristics of this organism. Cell and media samples of L. sakei were significantly separated on PLS-DA score plots. Cell and media metabolites, including sugars, amino acids, and organic acids, were identified as major metabolites contributing to the difference among samples. The alteration of cell and media metabolites during cell growth was strongly associated with energy production. Glucose, fructose, carnitine, tryptophan, and malic acid in the growth media were used as primary energy sources during the initial growth stage, but after the exhaustion of these energy sources, L. sakei could utilize other sources such as trehalose, citric acid, and lysine in the cell. The change in the levels of these energy sources was inversely similar to the energy production, especially ATP. Based on these identified metabolites, the metabolomic pathway associated with energy production through lactic acid fermentation was proposed. Although further studies are required, these results suggest that MS-based metabolomic analysis might be a useful tool for understanding the growth characteristics of L. sakei, the most important bacterium associated with meat and vegetable fermentation, during growth.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

Predicting the Concentration of Obesity-related Metabolites via Heart Rate Variability for Korean Premenopausal Obese Women: Multiple Regression Analysis (심박변이도를 통한 폐경 전 한국인 비만 여성의 비만 관련 대사체 농도 예측을 위한 회귀분석)

  • Kim, Jongyeon;Yang, Yo-Chan;Yi, Woon-Sup;Kim, Je-In;Maeng, Tae-Ho;Yoo, Duk-Joo;Shim, Jae-Woo;Cho, Woo-Young;Song, Mi-Yeon;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.24 no.4
    • /
    • pp.155-162
    • /
    • 2014
  • Objectives Advanced researches on the relationship between obesity and heart rate variability (HRV), heretofore, focused on characteristics of HRV depending on the state of obesity. However, the previous researches have not quantified predictive power of HRV toward the obesity-related variables, which is rather more meaningful for clinicians who regularly treat obese patients. Hence, we designed a research to investigate whether HRV could predict serum levels of obesity-related metabolites. Methods Ninety obese premenopausal women meeting the inclusion criteria were recruited. The HRV test, blood sampling, and measurement of physical traits were conducted. Multiple regression analysis of the measurement data was carried out, putting obesity-related metabolites (insulin, glucose, triglyceride, hs-CRP, HDL, LDL, total cholesterol) as outcome variables and the others as predictors. To select appropriate predictive variables, the Akaike's Information Criterion (AIC) was applied. Normality and homoskedasticity of residuals for each model were tested to identify if there were any violations of the regression analysis's basic assumption. Logarithm transformation was used for the values of the concentration of metabolites and the HRV. Results The regression model including Total Power (TP) value and BMI had significant predictive power for serum insulin concentration (F(2, 88)=835.7, p<0.001, $R^2=0.95$). The regression coefficient of ln (TP) was -0.1002. However, it was not sure if the HRV could predict concentrations of other metabolites. Conclusions The results suggest that the Total Power (TP) value of the HRV can predict the level of serum insulin. If the BMI could be assumed as being constant, when the TP value is multiplied by n, the predicted change of insulin could be drawn by multiplying $n^{-0.1002}$. The uncertainty of this model can be assumed as approximately 5%.

Screening the level of cyanogenic glucosides (dhurrin) in sorghum accessions using HPLC analysis

  • Choi, Sang Chul;Chung, Yong Suk;Lee, Yun Gyeong;Park, Yun Ji;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.104-104
    • /
    • 2017
  • Sorghum (Sorghum bicolor (L.) Moench.) is one of the most important crops for human and animal nutrition. Nonetheless, sorghum has a cyanogenic glucoside compound which can be degraded into hydrogen cyanide, toxic to humans and animals even with tiny amount. In consequence, breeding materials with a low cyanide level has been a top priority in sorghum breeding programs. To fulfill our long-term goal, we are screening sorghum accessions with low cyanide level, which would be an important breeding material for food safety. We collected seeds of various sorghum accessions and analyzed relevant metabolites to find useful breeding materials of sorghum accessions containing low cyanide. Fourteen wild relatives were obtained from the University of Georgia in US, a reference accession BTx623, and three local varieties from National Agrobiodiversity Center of Rural Development Administration in Korea, and one wild species from the Wild Plant Resources Seed Bank of Korea University in Korea. Sorghum plants were grown in plastic greenhouse under natural conditions. After growing, leaf samples were harvested at different developmental stages: seedling phase, vegetative phase (right before flowering), and reproductive phase (ripening). Using collected samples, quantification analysis were performed by an HPLC system for three metabolites (dhurrin, 4-hydroxybenzaldehyde, and 4-hydroxyphenylacetic acid) in sorghum plants. Prior to metabolome analysis, specific experimental condition for HPLC system was set to be able to separate three metabolites simultaneously. Under this condition, these metabolites were quantified in each accession by HPLC system. We observed that the metabolite contents were changed differently by developmental stages and accessions. We clustered these results into five groups as patterns of their contents by developmental stages. Most of accessions showed that 4-hydroxybenzaldehyde content was very high at seedling stage and decreased rapidly at vegetative phase. Interestingly, the patterns of dhurrin content were very different among clusters. However, 4-hydroxyphenylacetic acid content was maintained at low levels by developmental stages in most accessions. The results would demonstrate how dhurrin and alternative degradation pathways are differentiated in each accession.

  • PDF

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.